Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Trace Contaminant Detection by Ultraviolet Microscopy and Microspectroscopy

Abstract:
Organic and inorganic contaminants of precision devices such as flat panel displays, MEMS device and patterned semiconductors are often difficult to detect. Many contaminant materials are essentially invisible to common analytical techniques such as optical microscopy. CRAIC Technologies, Inc, a global leader in application-focused microanalysis solutions, provides the capability to both detect and analyze trace contaminants with a single instrument. This is done by combining both ultraviolet microscopy with ultraviolet microspectroscopy in the CRAIC Technologies QDI 2010™ microspectrophotometer equipped with the optional QDI ImageUV™ package.

Trace Contaminant Detection by Ultraviolet Microscopy and Microspectroscopy

San Dimas, CA | Posted on May 25th, 2008

Many organic and inorganic materials absorb light in the ultraviolet region but are invisible to the naked eye. This means that standard optical microscopy will not be able to detect these contaminants and has no other means of analyzing them. While other techniques are available, they require extensive sample preparation and can damage the sample. By utilizing ultraviolet micro-imaging, the user is able to quickly, easily and non-destructively locate many contaminants. UV microspectroscopy can then be performed to measure the electronic spectral characteristics of the contaminant in order to identify it. The spectra can also be used to further improve the clarity of the image of the contaminants by determining the wavelength of maximum absorbance. By combining both techniques in a single instrument, the QDI 2010™ microspectrophotometer, the user is easily able to locate and identify contaminant materials on flat panel displays, semiconductor chips, MEMS and even microfluidic devices. The QDI 2010™ microspectrophotometer is the first system ever to combine both UV microscopy and microspectroscopy in a single tool. It can also be upgraded to enable ultraviolet, visible and near infrared reflectance, transmittance and fluorescence microscopy and microspectroscopy.

####

About CRAIC Technologies, Inc.
CRAIC Technologies, Inc. is a global technology leader focused micro imaging and microspectroscopy in the ultraviolet, visible and near-infrared regions. CRAIC Technologies creates innovative solutions, with the very best in customer support, by listening to thier customers and implementing solutions that integrate operational excellence and technology expertise. CRAIC Technologies provides solutions for customers in forensic sciences, health sciences, semiconductor, geology, nanotechnology and materials science markets whose applications demand accuracy, precision, speed and the best in customer support.

For more information, please click here

Contacts:
CRAIC Technologies, Inc.
948 N. Amelia Ave.
San Dimas, CA 91773
USA
Toll Free: 877-UV-CRAIC (877-882-7242)
General: +001-310-573-8180
Fax: +001-310-573-8182
Information and Sales:

Copyright © CRAIC Technologies, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Imaging

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

Observation of left and right at nanoscale with optical force October 6th, 2023

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Tools

First direct imaging of small noble gas clusters at room temperature: Novel opportunities in quantum technology and condensed matter physics opened by noble gas atoms confined between graphene layers January 12th, 2024

New laser setup probes metamaterial structures with ultrafast pulses: The technique could speed up the development of acoustic lenses, impact-resistant films, and other futuristic materials November 17th, 2023

Ferroelectrically modulate the Fermi level of graphene oxide to enhance SERS response November 3rd, 2023

The USTC realizes In situ electron paramagnetic resonance spectroscopy using single nanodiamond sensors November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project