Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device
CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device

Abstract:
Microfluidic devices are finding increasing use in a broad range of applications that involve the production and controlled delivery of micro-droplets. The most notable and commercially successful of these is inkjet printing wherein streams of picoliter-sized drops are ejected at high repetition rates onto a media to render an image.

R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

Boston, MA | Posted on May 22nd, 2008

Overview Courtesy of Dr. Edward P. Furlani, Senior Principal Scientist, Device Physics and Simulation, Eastman Kodak Research Laboratories

Dr. Furlani is a featured speaker at next month's NSTI Nanotech 2008 conference

Researchers at Eastman Kodak have recently developed a novel CMOS/MEMS microfluidic device that enables the controlled production and redirection of streams of picoliter-sized droplets at frequency rates in the hundreds of kilohertz range [1]. This device consists of a pressurized reservoir that feeds a micro-nozzle manifold with hundreds of active orifices, each of which produces a continuous jet of fluid. An integrated cylindrical blocking structure is suspended beneath each orifice as shown in Fig. 1. This structure splits the flow from the reservoir into two opposing flows that merge immediately beneath an orifice to form the jet. Each microjet is subjected to thermal modulation as it exits the orifice, which causes the formation of droplets downstream. Controlled thermal modulation is achieved using individually addressable resistive heater elements that are integrated into the nozzle plate around each orifice, and also into the suspended blocking structure. The heaters are configured to enable symmetric or asymmetric heating. Modulated symmetric heating produces a straight stream of droplets whereas asymmetric heating causes the stream to deflect as shown in Fig. 1 (a) and (b).

The ability to generate and redirect droplets at the microscale is useful for numerous applications including continuous inkjet printing in which only a fraction of the generated droplets are used to render an image; unused droplets are guttered and recirculated to the reservoir. The integrated CMOS-based thermal modulation and deflection capability of this novel device represents distinct advantages over conventional continuous inkjet printing systems that rely on piezoelectric driven droplet generation and electrostatic deflection that requires charged droplets. The advantages of this technology include a high level of integration, individually addressable orifices, which enable selective droplet generation and deflection at each orifice, low power consumption, and high reliability with low cost due to microfabrication processing. Further work is planned to characterize the performance of the device for various fluids and to increase the frequency response and resolution of the droplet generation.

[1] C.N. Delametter, J.M. Chwalek, and D.P. Trauernicht, "Deflection Enhancement for Continuous Ink Jet printers," U.S.Patent 6,497,510, Issued Dec. 24, 2002. [2] E. P. Furlani, "Temporal instability of viscous liquid microjets with spatially varying surface tension," J. Phys. A: Math. and Gen. 38, 263-276, 2005. [3] E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, "Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2006. [4] E. P. Furlani and K. C. Ng, "Numerical Analysis of Nonlinear Deformation and Breakup of Slender Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2007.

####

About NSTI
The Nano Science and Technology Institute (NSTI) is chartered with the promotion and integration of nano and other advanced technologies through education, technology and business development. NSTI accomplishes this mission through its offerings of continuing education programs, scientific and business publishing and community outreach. NSTI produces the annual Nanotech conference and trade show, the most comprehensive international nanotechnology convention in the world. NSTI also produces the semi-annual Nanotech Venture, Nanotech Industrial Impact Workshop, Nano Impact Summit and the Nanotech Course Series in the US and Europe. NSTI was founded in 1997 as a result of the merger between various scientific societies, and is headquartered in Cambridge, Massachusetts with additional offices in California and Switzerland.

For more information, please click here

Contacts:
Sarah Wenning
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 901-4959
Fax: (925) 886-8461


Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Microfluidics/Nanofluidics

Scientists have shown how to make a low-cost yet high precision glass nanoengraving: In a joint study, scientists have developed a mechanism of laser deposition of patterns on glass with a resolution of 1000 times lower than the width of a human hair January 21st, 2016

Nanoworld 'snow blowers' carve straight channels in semiconductor surfaces: NIST, IBM researchers report important addition to toolkit of 'self-assembly' methods eyed for making useful devices December 28th, 2015

New device uses carbon nanotubes to snag molecules: Nanotube “forest” in a microfluidic channel may help detect rare proteins and viruses December 21st, 2015

A cheap, disposable device for diagnosing disease December 2nd, 2015

MEMS

Vesper Collaborates with GLOBALFOUNDRIES to Deliver First Piezoelectric MEMS Microphones: Acoustic sensing company works with top foundry to support mass-market consumer products January 21st, 2016

MEMS & Sensors Industry Group Previews “Internet of MEMS & Sensors” at CES 2016 -- Global industry association invites CE OEMS/integrators to conference track on January 7 January 6th, 2016

SITRI and Accelink Announce Cooperative Agreement on Opto-Electronic Communication December 31st, 2015

Nanodevices at one-hundredth the cost: New techniques for building microelectromechanical systems show promise December 20th, 2015

Announcements

Graphene is strong, but is it tough? Berkeley Lab scientists find that polycrystalline graphene is not very resistant to fracture February 7th, 2016

Lithium battery catalyst found to harm key soil microorganism February 7th, 2016

Scientists take key step toward custom-made nanoscale chemical factories: Berkeley Lab researchers part of team that creates new function in tiny protein shell structures February 6th, 2016

Discovery of the specific properties of graphite-based carbon materials February 6th, 2016

Events/Classes

Nanotech Security to Present at the Optical Document Security Conference February 11, 2016 February 4th, 2016

New research uses nanotechnology to prevent preterm birth: March of Dimes honors abstract on prematurity at SMFM Annual Meeting February 2nd, 2016

NBC LEARN DEBUTS SIX-PART VIDEO SERIES, “NANOTECHNOLOGY: SUPER SMALL SCIENCE” Produced by NBC Learn in partnership with the National Science Foundation, and narrated by NBC News/MSNBC’s Kate Snow, series highlights leading research in nanotechnology January 25th, 2016

Leti to Host Workshop on New Photonics Applications During SPIE Photonics West: Researchers also Will Present Four Invited Papers At Feb. 13-18 Conference, 14 Papers, Overall January 25th, 2016

Printing/Lithography/Inkjet/Inks

Teijin to Participate in Nano Tech 2016 January 21st, 2016

New bimetallic alloy nanoparticles for printed electronic circuits: Production of oxidation-resistant copper alloy nanoparticles by electrical explosion of wire for printed electronics January 5th, 2016

Photonic “sintering” may create new solar, electronics manufacturing technologies December 1st, 2015

Screen Printable Functionalised Graphene Ink November 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic