Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device
CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device

Abstract:
Microfluidic devices are finding increasing use in a broad range of applications that involve the production and controlled delivery of micro-droplets. The most notable and commercially successful of these is inkjet printing wherein streams of picoliter-sized drops are ejected at high repetition rates onto a media to render an image.

R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

Boston, MA | Posted on May 22nd, 2008

Overview Courtesy of Dr. Edward P. Furlani, Senior Principal Scientist, Device Physics and Simulation, Eastman Kodak Research Laboratories

Dr. Furlani is a featured speaker at next month's NSTI Nanotech 2008 conference

Researchers at Eastman Kodak have recently developed a novel CMOS/MEMS microfluidic device that enables the controlled production and redirection of streams of picoliter-sized droplets at frequency rates in the hundreds of kilohertz range [1]. This device consists of a pressurized reservoir that feeds a micro-nozzle manifold with hundreds of active orifices, each of which produces a continuous jet of fluid. An integrated cylindrical blocking structure is suspended beneath each orifice as shown in Fig. 1. This structure splits the flow from the reservoir into two opposing flows that merge immediately beneath an orifice to form the jet. Each microjet is subjected to thermal modulation as it exits the orifice, which causes the formation of droplets downstream. Controlled thermal modulation is achieved using individually addressable resistive heater elements that are integrated into the nozzle plate around each orifice, and also into the suspended blocking structure. The heaters are configured to enable symmetric or asymmetric heating. Modulated symmetric heating produces a straight stream of droplets whereas asymmetric heating causes the stream to deflect as shown in Fig. 1 (a) and (b).

The ability to generate and redirect droplets at the microscale is useful for numerous applications including continuous inkjet printing in which only a fraction of the generated droplets are used to render an image; unused droplets are guttered and recirculated to the reservoir. The integrated CMOS-based thermal modulation and deflection capability of this novel device represents distinct advantages over conventional continuous inkjet printing systems that rely on piezoelectric driven droplet generation and electrostatic deflection that requires charged droplets. The advantages of this technology include a high level of integration, individually addressable orifices, which enable selective droplet generation and deflection at each orifice, low power consumption, and high reliability with low cost due to microfabrication processing. Further work is planned to characterize the performance of the device for various fluids and to increase the frequency response and resolution of the droplet generation.

[1] C.N. Delametter, J.M. Chwalek, and D.P. Trauernicht, "Deflection Enhancement for Continuous Ink Jet printers," U.S.Patent 6,497,510, Issued Dec. 24, 2002. [2] E. P. Furlani, "Temporal instability of viscous liquid microjets with spatially varying surface tension," J. Phys. A: Math. and Gen. 38, 263-276, 2005. [3] E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, "Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2006. [4] E. P. Furlani and K. C. Ng, "Numerical Analysis of Nonlinear Deformation and Breakup of Slender Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2007.

####

About NSTI
The Nano Science and Technology Institute (NSTI) is chartered with the promotion and integration of nano and other advanced technologies through education, technology and business development. NSTI accomplishes this mission through its offerings of continuing education programs, scientific and business publishing and community outreach. NSTI produces the annual Nanotech conference and trade show, the most comprehensive international nanotechnology convention in the world. NSTI also produces the semi-annual Nanotech Venture, Nanotech Industrial Impact Workshop, Nano Impact Summit and the Nanotech Course Series in the US and Europe. NSTI was founded in 1997 as a result of the merger between various scientific societies, and is headquartered in Cambridge, Massachusetts with additional offices in California and Switzerland.

For more information, please click here

Contacts:
Sarah Wenning
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 901-4959
Fax: (925) 886-8461


Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Microfluidics/Nanofluidics

UO-Berkeley Lab unveil new nano-sized synthetic scaffolding technique: Oil-and-water approach from Richmond's UO lab to spark new line of versatile peptoid nanosheets September 2nd, 2014

MEMS

Carbyne morphs when stretched: Rice University calculations show carbon-atom chain would go metal to semiconductor July 21st, 2014

Leti to Present Technological Platforms Targeting Industry’s Needs for the Future at Semicon West Workshop: Presentation at STS Session to Focus on Leti Advanced Lithography Programs for 1x Nodes and on Silicon Photonics at TechXPot June 25th, 2014

Mirrorcle Technologies Opens New Company Headquarters May 27th, 2014

Ziptronix and EV Group Demonstrate Submicron Accuracies for Wafer-to-Wafer Hybrid Bonding: Enables Fine-Pitch Connections for 3D Applications, Including Image Sensors, Memory and 3D SoCs May 27th, 2014

Announcements

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

Accounting for Biological Aggregation in Heating and Imaging of Magnetic Nanoparticles September 2nd, 2014

Engineers develop new sensor to detect tiny individual nanoparticles September 2nd, 2014

Future solar panels September 2nd, 2014

Events/Classes

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Aspen Aerogels, Inc. to Present at Barclays CEO Energy-Power Conference August 27th, 2014

Malvern specialists to deliver inaugural short course on polymer characterization at Interplas 2014 August 27th, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Printing/Lithography/Inkjet/Inks

RMIT delivers $30m boost to micro and nano-tech August 26th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

SEMATECH and Newly Merged SUNY CNSE/SUNYIT Launch New Patterning Center to Further Advance Materials Development: Center to Provide Access to Critical Tools that Support Semiconductor Technology Node Development August 7th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE