Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device
CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device

Abstract:
Microfluidic devices are finding increasing use in a broad range of applications that involve the production and controlled delivery of micro-droplets. The most notable and commercially successful of these is inkjet printing wherein streams of picoliter-sized drops are ejected at high repetition rates onto a media to render an image.

R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

Boston, MA | Posted on May 22nd, 2008

Overview Courtesy of Dr. Edward P. Furlani, Senior Principal Scientist, Device Physics and Simulation, Eastman Kodak Research Laboratories

Dr. Furlani is a featured speaker at next month's NSTI Nanotech 2008 conference

Researchers at Eastman Kodak have recently developed a novel CMOS/MEMS microfluidic device that enables the controlled production and redirection of streams of picoliter-sized droplets at frequency rates in the hundreds of kilohertz range [1]. This device consists of a pressurized reservoir that feeds a micro-nozzle manifold with hundreds of active orifices, each of which produces a continuous jet of fluid. An integrated cylindrical blocking structure is suspended beneath each orifice as shown in Fig. 1. This structure splits the flow from the reservoir into two opposing flows that merge immediately beneath an orifice to form the jet. Each microjet is subjected to thermal modulation as it exits the orifice, which causes the formation of droplets downstream. Controlled thermal modulation is achieved using individually addressable resistive heater elements that are integrated into the nozzle plate around each orifice, and also into the suspended blocking structure. The heaters are configured to enable symmetric or asymmetric heating. Modulated symmetric heating produces a straight stream of droplets whereas asymmetric heating causes the stream to deflect as shown in Fig. 1 (a) and (b).

The ability to generate and redirect droplets at the microscale is useful for numerous applications including continuous inkjet printing in which only a fraction of the generated droplets are used to render an image; unused droplets are guttered and recirculated to the reservoir. The integrated CMOS-based thermal modulation and deflection capability of this novel device represents distinct advantages over conventional continuous inkjet printing systems that rely on piezoelectric driven droplet generation and electrostatic deflection that requires charged droplets. The advantages of this technology include a high level of integration, individually addressable orifices, which enable selective droplet generation and deflection at each orifice, low power consumption, and high reliability with low cost due to microfabrication processing. Further work is planned to characterize the performance of the device for various fluids and to increase the frequency response and resolution of the droplet generation.

[1] C.N. Delametter, J.M. Chwalek, and D.P. Trauernicht, "Deflection Enhancement for Continuous Ink Jet printers," U.S.Patent 6,497,510, Issued Dec. 24, 2002. [2] E. P. Furlani, "Temporal instability of viscous liquid microjets with spatially varying surface tension," J. Phys. A: Math. and Gen. 38, 263-276, 2005. [3] E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, "Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2006. [4] E. P. Furlani and K. C. Ng, "Numerical Analysis of Nonlinear Deformation and Breakup of Slender Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2007.

####

About NSTI
The Nano Science and Technology Institute (NSTI) is chartered with the promotion and integration of nano and other advanced technologies through education, technology and business development. NSTI accomplishes this mission through its offerings of continuing education programs, scientific and business publishing and community outreach. NSTI produces the annual Nanotech conference and trade show, the most comprehensive international nanotechnology convention in the world. NSTI also produces the semi-annual Nanotech Venture, Nanotech Industrial Impact Workshop, Nano Impact Summit and the Nanotech Course Series in the US and Europe. NSTI was founded in 1997 as a result of the merger between various scientific societies, and is headquartered in Cambridge, Massachusetts with additional offices in California and Switzerland.

For more information, please click here

Contacts:
Sarah Wenning
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 901-4959
Fax: (925) 886-8461


Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Microfluidics/Nanofluidics

Going with the flow January 16th, 2015

How bacteria control their size: By monitoring thousands of individual bacteria scientists discovered how they maintain their size from generation to generation January 6th, 2015

“Line dancing bacteria win the 2014 Dolomite and Lab on a Chip Video Competition” December 16th, 2014

Dolomite launches Mitos Dropix® Droplet Splitting System December 1st, 2014

MEMS

MEMS/Sensors Drive IoT/E Innovation in Europe: MEMS Executive Congress Europe Speakers Explore Internet of Things/Everything in Automotive, Consumer, Industrial Markets, 9-10, March in Copenhagen February 9th, 2015

STMicroelectronics Leads European Research Project to Develop Next-Generation Optical MEMS: Extension to a project launched in 2013 builds on current efforts to enable technologies for next-generation applications February 4th, 2015

Entegris Launches Dispense System Optimized for 3D and MEMS Applications: New IntelliGen® MV system delivers process efficiencies and defect reduction in dispensing mid-viscosity fluids February 3rd, 2015

CNSE's Smart System Technology & Commercialization Center Successfully Recertifies as ISO 9001:2008 January 12th, 2015

Announcements

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

First detailed microscopy evidence of bacteria at the lower size limit of life: Berkeley Lab research provides comprehensive description of ultra-small bacteria February 28th, 2015

Events/Classes

Leti to Offer Updates on Silicon Photonics Successes at OFC in LA February 27th, 2015

Hiden CATLAB Microreactor System at ARABLAB 2015 | Visit us on Booth 1011 February 26th, 2015

Indefinite Life Extension Activists Organize Online Demonstration February 26th, 2015

Renishaw and Bruker team up for a workshop on TERS and co-localised AFM Raman February 26th, 2015

Printing/Lithography/Inkjet/Inks

Maximum Precision in 3D Printing: New complete solution makes additive manufacturing standard for microfabrication February 26th, 2015

SUNY Poly CNSE Researchers and Corporate Partners to Present Forty Papers at Globally Recognized Lithography Conference: SUNY Poly CNSE Research Group Awarded Both ‘Best Research Paper’ and ‘Best Research Poster’ at SPIE Advanced Lithography 2015 forum February 25th, 2015

World’s first compact rotary 3D printer-cum-scanner unveiled at AAAS by NTU Singapore start-up: With production funded by crowdsourcing, the first unit will be delivered to the United States in March February 16th, 2015

3-D printing with custom molecules creates low-cost mechanical sensor February 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE