Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device
CMOS/MEMS droplet generator/deflector: a) device operation, b) experimental droplet deflection, c) fabricated device

Abstract:
Microfluidic devices are finding increasing use in a broad range of applications that involve the production and controlled delivery of micro-droplets. The most notable and commercially successful of these is inkjet printing wherein streams of picoliter-sized drops are ejected at high repetition rates onto a media to render an image.

R&D Profile: Integrated Thermal Modulation and Deflection of Viscous Microjets with Applications to Continuous Inkjet Printing: E. Furlani, Eastman Ko

Boston, MA | Posted on May 22nd, 2008

Overview Courtesy of Dr. Edward P. Furlani, Senior Principal Scientist, Device Physics and Simulation, Eastman Kodak Research Laboratories

Dr. Furlani is a featured speaker at next month's NSTI Nanotech 2008 conference

Researchers at Eastman Kodak have recently developed a novel CMOS/MEMS microfluidic device that enables the controlled production and redirection of streams of picoliter-sized droplets at frequency rates in the hundreds of kilohertz range [1]. This device consists of a pressurized reservoir that feeds a micro-nozzle manifold with hundreds of active orifices, each of which produces a continuous jet of fluid. An integrated cylindrical blocking structure is suspended beneath each orifice as shown in Fig. 1. This structure splits the flow from the reservoir into two opposing flows that merge immediately beneath an orifice to form the jet. Each microjet is subjected to thermal modulation as it exits the orifice, which causes the formation of droplets downstream. Controlled thermal modulation is achieved using individually addressable resistive heater elements that are integrated into the nozzle plate around each orifice, and also into the suspended blocking structure. The heaters are configured to enable symmetric or asymmetric heating. Modulated symmetric heating produces a straight stream of droplets whereas asymmetric heating causes the stream to deflect as shown in Fig. 1 (a) and (b).

The ability to generate and redirect droplets at the microscale is useful for numerous applications including continuous inkjet printing in which only a fraction of the generated droplets are used to render an image; unused droplets are guttered and recirculated to the reservoir. The integrated CMOS-based thermal modulation and deflection capability of this novel device represents distinct advantages over conventional continuous inkjet printing systems that rely on piezoelectric driven droplet generation and electrostatic deflection that requires charged droplets. The advantages of this technology include a high level of integration, individually addressable orifices, which enable selective droplet generation and deflection at each orifice, low power consumption, and high reliability with low cost due to microfabrication processing. Further work is planned to characterize the performance of the device for various fluids and to increase the frequency response and resolution of the droplet generation.

[1] C.N. Delametter, J.M. Chwalek, and D.P. Trauernicht, "Deflection Enhancement for Continuous Ink Jet printers," U.S.Patent 6,497,510, Issued Dec. 24, 2002. [2] E. P. Furlani, "Temporal instability of viscous liquid microjets with spatially varying surface tension," J. Phys. A: Math. and Gen. 38, 263-276, 2005. [3] E. P. Furlani, B. G. Price, G. Hawkins, and A. G. Lopez, "Thermally Induced Marangoni Instability of Liquid Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2006. [4] E. P. Furlani and K. C. Ng, "Numerical Analysis of Nonlinear Deformation and Breakup of Slender Microjets with Application to Continuous Inkjet Printing", Proc. NSTI Nanotechnology Conference, 2007.

####

About NSTI
The Nano Science and Technology Institute (NSTI) is chartered with the promotion and integration of nano and other advanced technologies through education, technology and business development. NSTI accomplishes this mission through its offerings of continuing education programs, scientific and business publishing and community outreach. NSTI produces the annual Nanotech conference and trade show, the most comprehensive international nanotechnology convention in the world. NSTI also produces the semi-annual Nanotech Venture, Nanotech Industrial Impact Workshop, Nano Impact Summit and the Nanotech Course Series in the US and Europe. NSTI was founded in 1997 as a result of the merger between various scientific societies, and is headquartered in Cambridge, Massachusetts with additional offices in California and Switzerland.

For more information, please click here

Contacts:
Sarah Wenning
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 901-4959
Fax: (925) 886-8461


Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

JPK announces expansion of its global sales and service activities in China and USA April 15th, 2014

Nanobiotix Appoints Thierry Otin as Head of Manufacturing and Supply April 15th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Engineers develop new materials for hydrogen storage April 15th, 2014

Microfluidics/Nanofluidics

A*STAR's Simtech collaboration agreements to accelerate the growth and development of the microfluidics industry April 1st, 2014

Dolomite releases novel droplet-on-demand sequencing and droplet generation microfluidic system April 1st, 2014

Heat-Based Technique Offers New Way to Measure Microscopic Particles March 13th, 2014

New partnership between Malvern Instruments and RheoSense brings m-VROCi to industrial markets February 28th, 2014

MEMS

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Rainbow-catching waveguide could revolutionize energy technologies: By slowing and absorbing certain wavelengths of light, engineers open new possibilities in solar power, thermal energy recycling and stealth technology March 28th, 2014

Micro systems with big commercial potential featured in SPIE journal: Special section in Journal of Micro/Nanolithography, MEMS, and MOEMS highlights emerging MOEMS technologies March 25th, 2014

Martini Tech Inc. Starts to Offer GaN Deposition Service by MOCVD March 25th, 2014

Announcements

Tiny particles could help verify goods: Chemical engineers hope smartphone-readable microparticles could crack down on counterfeiting April 15th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun even when its not shining April 15th, 2014

Targeting cancer with a triple threat: MIT chemists design nanoparticles that can deliver three cancer drugs at a time April 15th, 2014

Biologists Develop Nanosensors to Visualize Movements and Distribution of Plant Stress Hormone April 15th, 2014

Events/Classes

Engineers develop new materials for hydrogen storage April 15th, 2014

Near-field Nanophotonics Workshop in Boston April 14th, 2014

LetiDays Grenoble to Present Multiple Perspectives on Development, Challenges and Markets for the IoT April 14th, 2014

Iran to Hold 2nd National Conference on Nanotechnology in Power, Energy Industries April 13th, 2014

Printing/Lithography/Inkjet

Obducat has launched a new generation of SINDRE Nano Imprint production system April 11th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

Tiny Biomolecular Tweezers Facilitate Study of Mechanical Force Effects on Cells and Proteins April 3rd, 2014

IDTechEx Printed Electronics Europe 2014 Award Winners April 1st, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE