Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > R&D Profile: Drug-eluting Anodized Titanium Orthopedic Implants: T. Webster, Brown University

Nanotubes Under High Magnification, Courtesy of T. Webster, Brown University
Nanotubes Under High Magnification, Courtesy of T. Webster, Brown University

Abstract:
The average functional lifetime of orthopedic implants has been estimated to be less than 15 years. Few studies have focused on creating an orthopedic implant with multi-functional drug release to inhibit infection and wound inflammation events while increasing new bone formation.

R&D Profile: Drug-eluting Anodized Titanium Orthopedic Implants: T. Webster, Brown University

Boston, MA | Posted on May 22nd, 2008

R&D Overview Courtesy of Thomas Webster, Associate Professor, Division of Engineering, Brown University.

Dr. Webster is a featured speaker at next month's NSTI Nanotech conference, and will also lead the one-day workshop Biomaterials and Nanotechnology for Tissue Engineering Sunday, June 1.

In previous studies, titania nanotube arrays fabricated via anodization in dilute hydrofluoric acid were shown to increase bone growth compared to currently implanted titanium. In this study, these tubular structures were further utilized as novel prolonged-release drug delivery system. For this purpose, antibiotic drugs (penicillin and streptomycin) and an anti-inflammation drug (dexamethasone) were loaded into these nanotubular structures by either physical adsorption or electrochemical deposition. To mediate interactions between drug molecules and nanotube walls, anodized titanium nanotubes were modified by silanization to possess amine or methyl groups on their surface instead of OH groups. Results showed increased hydrophobicity of chemically modified titania nanotubes as well as improved drug loading efficiency on the more hydrophobic samples. These drug loaded substrates were soaked in phosphate buffered solution in a simulated body environment to determine drug release behavior. Buffer solution was collected and replaced every day. The eluted drug amounts were measured spectroscopically. Results showed prolonged drug releasing behavior from chemically modified nanotubes compared to conventional titanium substrates. In this manner, this study advances currently used titanium to possess drug release behavior which can improve orthopedic implant efficacy.

Since we have already demonstrated the in vitro efficacy of these anodized nanotubular contructs for releasing drugs (anti-bacterial, anti-inflammatory, and pro-bone growing) and promoting new bone growth, we are planning to conduct in vivo verification. Currently, we are planning to conduct animal studies in which currently implant materials are modified via anodization to possess such novel nanotubular structures to both release drugs and promote new bone growth.

####

About NSTI
The Nano Science and Technology Institute (NSTI) is chartered with the promotion and integration of nano and other advanced technologies through education, technology and business development. NSTI accomplishes this mission through its offerings of continuing education programs, scientific and business publishing and community outreach. NSTI produces the annual Nanotech conference and trade show, the most comprehensive international nanotechnology convention in the world. NSTI also produces the semi-annual Nanotech Venture, Nanotech Industrial Impact Workshop, Nano Impact Summit and the Nanotech Course Series in the US and Europe. NSTI was founded in 1997 as a result of the merger between various scientific societies, and is headquartered in Cambridge, Massachusetts with additional offices in California and Switzerland.

For more information, please click here

Contacts:
Sarah Wenning
696 San Ramon Valley Blvd., Ste. 423
Danville, CA 94526
Ph: (925) 901-4959
Fax: (925) 886-8461

Copyright © NSTI

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Nanotubes/Buckyballs

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Beyond LEDs: Brighter, new energy-saving flat panel lights based on carbon nanotubes - Planar light source using a phosphor screen with highly crystalline single-walled carbon nanotubes (SWCNTs) as field emitters demonstrates its potential for energy-efficient lighting device October 14th, 2014

Nanomedicine

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Non-Toxic Nanocatalysts Open New Window for Significant Decrease in Reaction Process October 19th, 2014

European Commission opens the gate towards the implementation of Nanomedicine Translation Hub October 16th, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Events/Classes

Ucore's McKenzie to Deliver Presentation to Rare Earths Conference in Singapore as Highlight of Fall 2014 Marketplace Schedule October 19th, 2014

Aspen Aerogels, Inc. Schedules Third Quarter 2014 Earnings Release and Conference Call for November 6, 2014 October 17th, 2014

New VDMA Association "Electronics, Micro and Nano Technologies" founded: Inaugural Meeting in Frankfurt/Main, Germany October 15th, 2014

Nanotronics Imaging Releases nSPECŪ 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE