Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Multifunctional Nanoparticles Image, Target, and Treat Tumors

Abstract:
Encapsulating magnetic iron oxide nanoparticles within a silica shell has yielded a new multifunctional nanoparticle that has the potential to image, target, and treat tumors with water-insoluble anticancer drugs. A report of this work appears in the journal ACS Nano.

Multifunctional Nanoparticles Image, Target, and Treat Tumors

Bethesda , MD | Posted on May 21st, 2008


Back
Nanotech News


May 2008

Multifunctional Nanoparticles Image, Target, and Treat Tumors

Encapsulating magnetic iron oxide nanoparticles within a silica shell has yielded a new multifunctional nanoparticle that has the potential to image, target, and treat tumors with water-insoluble anticancer drugs. A report of this work appears in the journal ACS Nano.

Jeffery Zink, Ph.D., led a research team at the University of California, Los Angeles, that created the new nanoparticles, which contain an iron oxide nanoparticle core and a porous silica shell. The investigators coated the resulting nanoparticles with folic acid, a tumor targeting agent, and a fluorescent dye to enable optical imaging. Soaking the nanoparticles in a solvent containing either paclitaxel or camptothecin, both of which are poorly soluble in water and difficult to deliver to tumors as a result, resulted in significant drug loading through the pores in the silica shell. Tests showed that the drug-loaded nanoparticles were stable for at least 2 months.

Experiments with pancreatic cancer cells demonstrated that the targeted nanoparticles were taken up rapidly by cancer cells, whereas untargeted control nanoparticles were not. The researchers were able to quantify nanoparticle uptake using both MRI and optical spectroscopy thanks to the iron oxide nanoparticle core and fluorescent dyes, respectively. The targeted nanoparticles were also more toxic to the tumor cells than were untargeted nanoparticles.

This work, which was supported in part by the NCI, is detailed in the paper "Multifunctional Inorganic Nanoparticles for Imaging, Targeting, and Drug Delivery." An abstract of this paper is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:
National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View abstract

Related News Press

News and information

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Nanometrics to Announce Second Quarter Financial Results on July 31, 2018 July 12th, 2018

Imaging

Oxford Instruments’ 22 Tesla superconducting magnet system commissioned at the UAM, making it the most intense magnetic field available outside a large international facility July 12th, 2018

Alzheimer's breakthrough: Brain metals that may drive disease progression revealed: In brains affected by Alzheimer's, researchers identify chemically reduced iron species, with mineral forms including a magnetic iron oxide June 22nd, 2018

Collaboration yields discovery of 12-sided silica cages June 20th, 2018

Nanomedicine

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Researchers identify cost-cutting option in treating nail fungus with nanotechnology: GW researcher Adam Friedman, M.D., studied the potential use of nitric oxide-releasing nanoparticles to improve onychomycosis treatment July 11th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

Discoveries

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Announcements

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project