Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Ulster Scientists Develop DNA Biosensor Technology

Scientists Dr Tony Byrne, Professor Pascal Mailley and Dr Patrick Lemoine are collaborating on developing ground-breaking biosensors
Scientists Dr Tony Byrne, Professor Pascal Mailley and Dr Patrick Lemoine are collaborating on developing ground-breaking biosensors

Abstract:
Scientists at the University of Ulster are using nanotechnology - highly miniaturised technology - to build new DNA biosensors which could be used in identifying genetic diseases, cancer research, identification of dangerous micro-organisms, and forensic science.

Ulster Scientists Develop DNA Biosensor Technology

Belfast, Ireland | Posted on May 21st, 2008

Dr Patrick Lemoine and Dr Tony Byrne from the School of Electrical and Mechanical Engineering at Ulster have teamed up with French biosensor expert, Professor Pascal Mailley from the CEA Grenoble research facility for the project.

The collaboration has been facilitated by a research grant from the Royal Society.

The aim of the project is to devise a DNA biosensor using new nanoscale fabrication techniques. This means manipulating engineering materials which are one thousand times smaller than the width of a human hair.

The Nanotechnology and Integrated BioEngineering Centre (NIBEC) at Ulster has state-of-the-art facilities for nanomaterials research as well as the mix of disciplinary expertise - physics, chemistry, biology and engineering, required for such projects.

Man-made biosensors are usually small hand-held devices costing a few pounds, which can replace laboratory systems costing thousands of pounds. Some are already commercially available in pharmacies, such as blood/sugar measurement devices essential for diabetics.

What is not available is an equivalent biosensor to detect DNA - the long chain molecule hidden in human cells which holds the key to life and which provides an unique code for every individual on earth.

Such a biosensor would present enormous opportunities. For example, DNA sequencing is necessary for the identification and treatment of genetic diseases, for cancer research, for the identification of dangerous micro-organisms or for forensic science."

Dr Lemoine says: "The key idea of the proposal is to use specific techniques called ‘self-assembly' and ‘nano-patterning' to create arrays containing millions of pixels with very high surface areas.

This means that more DNA fragments can be immobilised in smaller geometric areas, typically a few millimetres square. When the ‘chip' is exposed to a sample of unknown DNA, the complementary strands join up, revealing the sequence of the unknown DNA.

This technology is not only applicable to DNA chips but might allow the production of biosensors using a wide range of bio-molecules which may be used as miniature implantable sensors for monitoring conditions within the body.

For example, the development of an artificial pancreas, which could both measure glucose and control insulin delivery, would be of major benefit to diabetics.

####

About Nanotechnology and Integrated BioEngineering Centre
NIBEC - the Nanotechnology and Integrated BioEngineering Centre is a well established world-class research complex at the University of Ulster's Jordanstown campus. NIBEC represents a consolidation of eight advanced functional materials research groups, dealing with thin-film material types used in electronics, photonics, nanotechnology, sensors, MEMS, optical, environmental, magnetic and bio-material devices.

The £10M purpose-built facilities house some of the most sophisticated nano-fabrication, biological and characterisation equipment in the world. Strong international collaborations have been developed and large infrastructural and project funding has been a highlight of this rapidly growing research area. The centre hosts major core research initiatives such as MATCH (EPSRC National Centre); CACR (UU and Royal Victoria Hospital); NanotecNI (UU and QUB); and also the team have developed formal collaborations with numerous world-wide Institutions and Industry.

NIBEC is staffed by an internationally recognised team of researchers and academics working predominantly at the interface of bioengineering and nanotechnology. Technology transfer is a key objective and a number of successful spin-out companies have emerged from NIBEC in recent years, the most successful of these being Heartscape, HeartSine Technology and Sensors Technology and Devices Ltd (ST&D).

For more information, please click here

Contacts:
Press Office
Communication and Development
Tel:(028) 9036 6178
Email:

Copyright © University of Ulster

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Nanomedicine

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Arrowhead Hosts Investor & Analyst R&D Day to Introduce TRiM(TM) Platform and Lead RNAi-based Drug Candidates September 14th, 2017

Graphene based terahertz absorbers: Printable graphene inks enable ultrafast lasers in the terahertz range September 13th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Sensors

Leti Develops Proof of Concept to Test Wireless Systems in Aircraft: Will Present Results of Joint Project at AeroTech Conference And Exhibition in Fort Worth, Texas, Sept. 26-28 September 20th, 2017

Research shows how DNA molecules cross nanopores: Study could inform biosensors, manufacturing, and more September 5th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

Discoveries

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

Announcements

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

GLOBALFOUNDRIES Delivers Custom 14nm FinFET Technology for IBM Systems: Jointly developed 14HP process is world’s only technology that leverages both FinFET and SOI September 20th, 2017

GLOBALFOUNDRIES Introduces New 12nm FinFET Technology for High-Performance Applications September 20th, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Nanobiotechnology

Do titanium dioxide particles from orthopedic implants disrupt bone repair? September 16th, 2017

Applications for the nanomedTAB are open until September 18th, 2017 September 13th, 2017

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

How to draw electricity from the bloodstream: A one-dimensional fluidic nanogenerator with a high power-conversion efficiency September 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project