Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Engineers Demonstrate First Room-temperature Semiconductor Source of Coherent Terahertz Radiation

(left) Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and (right) research associate Mikhail Belkin, both of Harvard's School of Engineering and Applied Sciences.

Credit: Eliza Grinnell, Harvard School of Engineering and Applied Sciences
(left) Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, and (right) research associate Mikhail Belkin, both of Harvard's School of Engineering and Applied Sciences.

Credit: Eliza Grinnell, Harvard School of Engineering and Applied Sciences

Abstract:
Breakthrough could greatly enhance applications ranging from security screening to chemical sensing

Engineers Demonstrate First Room-temperature Semiconductor Source of Coherent Terahertz Radiation

Cambridge, MA | Posted on May 19th, 2008

Engineers and applied physicists from Harvard University have demonstrated the first room-temperature electrically-pumped semiconductor source of coherent Terahertz (THz) radiation, also known as T-rays. The breakthrough in laser technology, based upon commercially available nanotechnology, has the potential to become a standard Terahertz source to support applications ranging from security screening to chemical sensing.

Spearheaded by research associate Mikhail Belkin and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, both of Harvard's School of Engineering and Applied Sciences (SEAS), the findings will be published in the May 19 issue of Applied Physics Letters. The researchers have also filed for U.S. patents covering the novel device.

Using lasers in the Terahertz spectral range, which covers wavelengths from 30 to 300å, has long presented a major hurdle to engineers. In particular, making electrically pumped room-temperature and thermoelectrically-cooled Terahertz semiconductor lasers has been a major challenge. These devices require cryogenic cooling, greatly limiting their use in everyday applications.

"By contrast, our device emits T-rays with several hundreds of nanowatts of power at room temperature and microwatts of power at temperatures easily achievable with commercially available thermoelectric coolers," says Belkin. "Further, there is the potential of increasing the terahertz output power to milliwatt levels by optimizing the semiconductor nanostructure of the active region and by improving the extraction efficiency of the terahertz radiation."

To achieve the breakthrough and overcome the temperature limitations of current laser designs, the researchers engineered a room temperature mid-infrared Quantum Cascade Laser (QCL) that emits light at two frequencies simultaneously. The generation of Terahertz radiation occurs via the process of difference-frequency generation inside the laser material at room temperature at a frequency of 5 THz (equal to the difference of the two mid-infrared QCL frequencies).

Mid-infrared QCLs were invented and demonstrated by Capasso and his team at Bell Labs in 1994. The compact millimeter length semiconductor lasers operate routinely at room temperature with high optical powers and are increasingly used in the commercial sector for wide range of applications in chemical sensing and trace gas analysis. The devices, made by stacking ultra-thin atomic layers of semiconductor materials on top of each other, are variable and tunable, allowing an engineer to adjust the energy levels in the structure to create artificial laser medium.

"Terahertz imaging and sensing is a very promising but relatively new technology that requires compact, portable and tunable sources to achieve widespread penetration. Our devices are an important first step in this direction," said Capasso. "We believe our THz source has great development potential because the nanoscale material used was grown by Molecular Beam Epitaxy, a commercial and widely used thin film growth technique which 'spray paints' atoms on a surface one layer at a time."

The ability of Terahertz rays to penetrate efficiently through paper, clothing, cardboard, plastic and many other materials makes them ideal for use in many applications. For example, a device emitting T-rays could be used to image concealed weapons, detect chemical and biological agents through sealed packages, see tumors without causing any harmful side effects, and spot defects within materials such as cracks in the Space Shuttle's foam insulation.

Belkin and Capasso's co-authors are Feng Xie and Alexey Belyanin, Department of Physics at Texas A&M University, College Station; and Milan Fischer, Andreas Wittmann, and Jérôme Faist, Institute of Quantum Electronics at ETH, Zürich, Switzerland. The research was supported by the Air Force Office of Scientific Research and the National Science Foundation. The authors also acknowledge the support of two Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

####

For more information, please click here

Contacts:
Michael Patrick Rutter

617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Hiden Release New Gas Analysis Catalogue August 21st, 2014

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Chip Technology

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Promising Ferroelectric Materials Suffer From Unexpected Electric Polarizations: Brookhaven Lab scientists find surprising locked charge polarizations that impede performance in next-gen materials that could otherwise revolutionize data-driven devices August 18th, 2014

AI Technology (AIT) Introduces Novel High Temperature Large Area Underfill with Proven Stress Absorption August 15th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

Discoveries

Shaping the Future of Nanocrystals: Berkeley Lab Researchers Obtain First Direct Observation of Facet Formation in Nanocubes August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Nanotechnology Helps Production of Super Adsorbent Polymers August 21st, 2014

Rice physicist emerges as leader in quantum materials research: Nevidomskyy wins both NSF CAREER Award and Cottrell Scholar Award August 20th, 2014

Announcements

Wyatt Technology’s 24th International Light Scattering Colloquium to Highlight Developments in Applications and Characterization of Nanoparticles August 21st, 2014

Ultra-short pulse lasers & Positioning August 21st, 2014

Malvern’s Dr Alan Rawle talks TLAs in plenary lecture at Particulate Systems Analysis conference August 21st, 2014

Water window imaging opportunity: A new theoretical study elucidates mechanisms that could help in producing coherent radiations, ultimately promoting high-contrast imaging of biological samples August 21st, 2014

Photonics/Optics/Lasers

Ultra-short pulse lasers & Positioning August 21st, 2014

Electrical engineers take major step toward photonic circuits: Team invents non-metallic metamaterial that enables them to 'compress' and contain light August 19th, 2014

Laser makes microscopes way cooler: Cooling a nanowire probe with a laser could lead to substantial improvements in the sensitivity of atomic force probe microscopes August 15th, 2014

Molecular engineers record an electron's quantum behavior August 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE