Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > "Liquid Metal" at the Center of IBM Innovation to Significantly Reduce Cost of Concentrator Photovoltaic Cells

Abstract:
IBM Research Unveils Breakthrough in Solar Farm Technology

"Liquid Metal" at the Center of IBM Innovation to Significantly Reduce Cost of Concentrator Photovoltaic Cells

ARMONK, NY | Posted on May 15th, 2008

IBM (NYSE: IBM) today announced a research breakthrough in photovoltaics technology that could significantly reduce the cost of harnessing the Sun's power for electricity.

By mimicking the antics of a child using a magnifying glass to burn a leaf or a camper to start a fire, IBM scientists are using a large lens to concentrate the Sun's power, capturing a record 230 watts onto a centimeter square solar cell, in a technology known as concentrator photovoltaics, or CPV. That energy is then converted into 70 watts of usable electrical power, about five times the electrical power density generated by typical cells using CPV technology in solar farms.

If it can overcome additional challenges to move this project from the lab to the fab, IBM believes it can significantly reduce the cost of a typical CPV based system. By using a much lower number of photovoltaic cells in a solar farm and concentrating more light onto each cell using larger lenses, IBM's system enables a significant cost advantage in terms of a lesser number of total components.

For instance, by moving from a 200 sun system ("one sun" is a measurement equal to the solar power incident at noon on a clear summer day), where about 20 watts per square centimeter of power is concentrated onto the cell, to the IBM Lab results of a 2300 sun system, where approximately 230 watts per square centimeter are concentrated onto the cell system, the IBM system cuts the number of photovoltaic cells and other components by a factor of 10.

"We believe IBM can bring unique skills from our vast experience in semiconductors and nanotechnology to the important field of alternative energy research," said Dr. Supratik Guha, the scientist leading photovoltaics activities at IBM Research. "This is one of many exploratory research projects incubating in our labs where we can drive big change for an entire industry while advancing the basic underlying science of solar cell technology."

The trick lies in IBM's ability to cool the tiny solar cell. Concentrating the equivalent of 2000 suns on such a small area generates enough heat to melt stainless steel, something the researchers experienced first hand in their experiments. But by borrowing innovations from its own R&D in cooling computer chips, the team was able to cool the solar cell from greater than 1600 degrees Celsius to just 85 degrees Celsius.

The initial results of this project will be presented at the 33rd IEEE Photovoltaic Specialists conference today, where the IBM researchers will detail how their liquid metal cooling interface is able to transfer heat from the solar cell to a copper cooling plate much more efficiently than anything else available today.

The IBM research team developed a system that achieved breakthrough results by coupling a commercial solar cell to an advanced IBM liquid metal thermal cooling system using methods developed for the microprocessor industry.

Specifically, the IBM team used a very thin layer of a liquid metal made of a gallium and indium compound that they applied between the chip and a cooling block. Such layers, called thermal interface layers, transfer the heat from the chip to the cooling block so that the chip temperature can be kept low. The IBM liquid metal solution offers the best thermal performance available today, at low costs, and the technology was successfully developed by IBM to cool high power computer chips earlier.

While concentrator-based photovoltaics technologies have been around since the 1970s, they have received renewed interest in recent times. With very high concentrations, they have the potential to offer the lowest-cost solar electricity for large-scale power generation, provided the temperature of the cells can be kept low, and cheap and efficient optics can be developed for concentrating the light to very high levels.

IBM is exploring four main areas of photovoltaic research: using current technologies to develop cheaper and more efficient silicon solar cells, developing new solution processed thin film photovoltaic devices, concentrator photovoltaics, and future generation photovoltaic architectures based upon nanostructures such as semiconductor quantum dots and nanowires.

The goal of the projects is to develop efficient photovoltaic structures that would reduce the cost, minimize the complexity, and improve the flexibility of producing solar electric power.

In addition to the photovoltaic research announced today, IBM is focused on several areas related to energy and the environment, including energy efficient technology and services, carbon management, advanced water management, intelligent utility networks and intelligent transportation systems. With decades of leadership in environmental stewardship, proven ability to solve complex challenges and unparalleled global reach, IBM is uniquely positioned to increase the efficiency of today's systems and enable our clients' "green" strategies.

####

For more information, please click here

Contacts:
Steven Tomasco
IBM
914-945-1655

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Discoveries

Influential Interfaces Lead to Advances in Organic Spintronics July 1st, 2015

Ultra-stable JILA microscopy technique tracks tiny objects for hours July 1st, 2015

Emergence of a 'devil's staircase' in a spin-valve system July 1st, 2015

Measurement of Tiny Amounts of Heavy Metals in Baby Food Samples July 1st, 2015

Announcements

Leti Announces Launch of First European Nanomedicine Characterisation Laboratory: Project Combines Expertise of 9 Partners in 8 Countries to Foster Nanomedicine Innovation and Facilitate Regulatory Approval July 1st, 2015

Bruker Introduces Second-Generation Inspire Nanochemical Imaging Solution: Featuring Unique PeakForce IR and IR EasyAlign Technology July 1st, 2015

GLOBALFOUNDRIES Completes Acquisition of IBM Microelectronics Business: Transaction adds differentiating technologies, world-class technologists, and intellectual property July 1st, 2015

Samsung's New Graphene Technology Will Double Life Of Your Lithium-Ion Battery July 1st, 2015

Energy

Visible Light-Sensitive Photocatalysts Used for Purification of Contaminated Water in Iran June 30th, 2015

The Hydrogen-Fuel cell will revolutionize the economy of the world: New non-platinum and nanosized catalyst for polymer electrolyte fuel cell June 29th, 2015

June 29th, 2015

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Quantum Dots/Rods

Philips Introduces Quantum Dot TV with Color IQ™ Technology from QD Vision: Manufacturer is first to offer quantum dot displays for both TVs and monitors June 30th, 2015

Biomanufacturing of CdS quantum dots: A bacterial method for the low-cost, environmentally-friendly synthesis of aqueous soluble quantum dot nanocrystals June 24th, 2015

Iranian Researchers Model, Design Optical Switches June 13th, 2015

Lehigh University researchers unveil engineering innovations at TechConnect 2015: TechConnect is the world's largest accelerator for industry-vetted emerging-technologies ready for commercialization June 11th, 2015

Solar/Photovoltaic

Making new materials with micro-explosions: ANU media release: Scientists have made exotic new materials by creating laser-induced micro-explosions in silicon, the common computer chip material June 29th, 2015

Spain nanotechnology featured at NANO KOREA 2015 June 26th, 2015

Stanford researchers stretch a thin crystal to get better solar cells June 25th, 2015

Toward tiny, solar-powered sensors: New ultralow-power circuit improves efficiency of energy harvesting to more than 80 percent June 23rd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project