Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Commencement 2008: Student innovation could improve data storage, magnetic sensors

Abstract:
Paul Morrow, who will graduate from Rensselaer Polytechnic Institute on May 17, has come a long way from his days as an elementary school student, pulling apart his mother's cassette player. The talented young physicist has developed two innovations that could vastly improve magnetic data storage and sense extremely low level magnetic fields in everything from ink on counterfeit currency to tissue in the human brain and heart.

Commencement 2008: Student innovation could improve data storage, magnetic sensors

Troy, NY | Posted on May 14th, 2008

First, Morrow developed a nanomaterial that has never before been produced. The nanomaterial is an array of freestanding nanoscale columns composed of alternating layers of magnetic cobalt and non-magnetic copper. Morrow's three-dimensional arrangement of the magnetic and non-magnetic layers creates a material that exhibits promising magnetic properties for data storage and magnetic field sensing at room temperature. Similar technology is currently in use in hard drives around the world, but they both use a two-dimensional film design for the layers.

"Because the nanostructure is three-dimensional, it has the potential to vastly expand data storage capability," Morrow said. "A disk with increased data storage density would reduce the size, cost, and power consumption of any electronic device that uses a magnetic hard drive, and a read head sensor based on a small number of these nanocolumns has promise for increasing spatial sensitivity, so that bits that are more closely spaced on the disk can be read. This same concept can be applied to other areas where magnetic sensors are used, such as industrial or medical applications."

Morrow has also developed a microscopic technique to measure the minute magnetic properties of his nanocolumns. Prior to his innovation, no such method existed that was fine-tuned enough to sense the magnetic properties of one or even a small number of freestanding nanostructures.

The technique uses a specialized scanning tunneling microscope (STM) that Morrow built that contains no internal magnetic parts. Most STMs in use today have magnetic parts that make it impossible for them to operate reliably in an external magnetic field according to Morrow. With his modified non-magnetic STM, Morrow was able to use an electromagnet to control the magnetic behavior of his nanocolumns and measure the magnetic properties of fewer than 10 nanocolumns at one time.

"To date it has been extremely difficult to get an instrument to detect magnetic properties on such a small scale," Morrow said. "With this type of sensitivity, engineers will be able to sense the very low level magnetic properties of a material with sub-micron spatial resolution."

He is currently working to fine-tune the device to detect the properties of just one nanocolumn. His technique could have important implications for the study of other magnetic nanostructures for magnetic sensing applications including motion sensors for industrial applications, detection of magnetic ink in currency and other secure documents, and even help detect and further understand the minuscule magnetic fields generated by the human body.

His discoveries have been published in two articles in the journal Nanotechnology.

Morrow proudly originates from the city of Spartanburg, S.C., the only boy in a close family that includes three sisters. His father is a retired chemistry professor at Wofford College, the local liberal arts college that Morrow attended for his bachelor's, and his mother is a master teacher who instructs elementary schoolteachers in improving their teaching methods. "Their love of learning and teaching has inspired me to one day become a teacher myself," Morrow said.

Morrow will graduate from Rensselaer with a doctorate in physics, applied physics, and astronomy.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nation�s oldest technological university. The university offers bachelor�s, master�s, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contacts:
Gabrielle DeMarco

518-276-6542

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Academic/Education

First Canada Excellence Research Chair gets $10 million from the federal government for oilsands research at the University of Calgary: Federal government announces prestigious research chair to study improving oil production efficiency October 19th, 2014

Raytheon, UMass Lowell open on-campus research institute: Industry leader’s researchers to collaborate with faculty, students to move key technologies forward through first-of-its-kind partnership October 11th, 2014

SUNY Colleges of Nanoscale Science and Engineering and National Institute for Occupational Safety and Health Announce Expanded Partnership October 2nd, 2014

Yale University and Leica Microsystems Partner to Establish Microscopy Center of Excellence: Yale Welcomes Scientists to Participate in Core Facility Opening and Super- Resolution Workshops October 20 Through 31, 2014 September 30th, 2014

Memory Technology

Superconducting circuits, simplified: New circuit design could unlock the power of experimental superconducting computer chips October 18th, 2014

Future computers could be built from magnetic 'tornadoes' October 14th, 2014

Research mimics brain cells to boost memory power September 30th, 2014

SouthWest NanoTechnologies (SWeNT) Receives NIST Small Business Innovation Research (SBIR) Phase 1 Award to Produce Greater than 99% Semiconducting Single-Wall Carbon Nanotubes September 19th, 2014

Sensors

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Graphenea opens US branch October 16th, 2014

IRLYNX and CEA-Leti to Streamline New CMOS-based Infrared Sensing Modules Dedicated to Human-activities Characterization October 15th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Discoveries

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Announcements

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Design of micro and nanoparticles to improve treatments for Alzheimers and Parkinsons: At the Faculty of Pharmacy of the UPV/EHU-University of the Basque Country encapsulation techniques are being developed to deliver correctly and effectively certain drugs October 20th, 2014

Physicists build reversible laser tractor beam October 20th, 2014

Removal of Limitations of Composites at Superheat Temperatures October 20th, 2014

Tools

New Grand ARM Transmission Electron Microscope Offers Highest Commercially-Available Atomic Resolution of 63 Picometers October 17th, 2014

Nanodevices for clinical diagnostic with potential for the international market: The development is based on optical principles and provides precision and allows saving vital time for the patient October 15th, 2014

Nanotronics Imaging Releases nSPEC® 3D, Powerful Microscope That Captures 3D Images at Nanoscale, in Lightning Speed: Company Unveils Design at American Chemical Society 2014 International Elastomer Conference October 14th, 2014

Unique catalysts for hydrogen fuel cells synthesized in ordinary kitchen microwave oven October 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE