Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Commencement 2008: Rensselaer Student Invents Alternative to Silicon Chip

Weixiao Huang
Photo Credit: Rensselaer/Mark McCarty
Weixiao Huang
Photo Credit: Rensselaer/Mark McCarty

Abstract:
Even before Weixiao Huang received his doctorate from Rensselaer Polytechnic Institute, his new transistor captured the attention of some of the biggest American and Japanese automobile companies. The 2008 graduate's invention could replace one of the most common pieces of technology in the world ó the silicon transistor for high-power and high-temperature electronics.

Commencement 2008: Rensselaer Student Invents Alternative to Silicon Chip

Troy, NY | Posted on May 13th, 2008

Huang, who comes from humble roots as the son of farmers in rural China, has invented a new transistor that uses a compound material known as gallium nitride (GaN), which has remarkable material properties. The new GaN transistor could reduce the power consumption and improve the efficiency of power electronics systems in everything from motor drives and hybrid vehicles to house appliances and defense equipment.

"Silicon has been the workhorse in the semiconductor industry for last two decades," Huang said. "But as power electronics get more sophisticated and require higher performing transistors, engineers have been seeking an alternative like gallium nitride-based transistors that can perform better than silicon and in extreme conditions."

Each household likely contains dozens of silicon-based electronics. An important component of each of those electronics is usually a silicon-based transistor know as a silicon metal/oxide semiconductor field-effect transistor (silicon MOSFET). To convert the electric energy to other forms as required, the transistor acts as a switch, allowing or disallowing the flow of current through the device.

Huang first developed a new process that demonstrates an excellent GaN MOS (metal/oxide/GaN) interface. Engineers have known that GaN and other gallium-based materials have some extremely good electrical properties, much better than silicon. However, no useful GaN MOS transistor has been developed. Huang's innovation, the first GaN MOSFET of its kind in the world, has already shown world-record performance according to Huang. In addition, Huang has shown that his innovation can integrate several important electronic functions onto one chip like never before. "This will significantly simplify entire electronic systems," Huang said. Huang has also designed and experimentally demonstrated several new novel high-voltage MOS-gated FETs which have shown superior performance compared to silicon MOSFET in terms of lower power consumption, smaller chip size, and higher power density.

The new transistors can greatly reduce energy loss, making energy conversion more efficient. "If these new GaN transistors replaced many existing silicon MOSFETs in power electronics systems, there would be global reduction in fossil fuel consumption and pollution," Huang said.

The new GaN transistors can also allow the electronics system to operate in extremely hot, harsh, and high-power environments and even those that produce radiation. "Because it is so resilient, the device could open up the field of electronic engineering in ways that were not previously possible due to the limitations imposed by less tolerant silicon transistors," he said.

Huang has published more than 15 papers during his time as doctoral student in the Department of Electrical, Computer, and Systems Engineering at Rensselaer. Despite obvious difficulties, his parents worked tirelessly to give Huang the best possible educational opportunities according to Huang. And when school wasn't enough, Huang's father woke him up early every morning to practice mathematical calculations without a calculator, instilling in Huang a lifelong appreciation for basic, theoretical mathematics and sciences.

He received a bachelor's in electronics from Peking University in Beijing in 2001 and a master's in physics from Rensselaer in 2003. He will receive his doctorate from Rensselaer on May 17, 2008 and plans to work as a device engineer in the semiconductor industry.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nationís oldest technological university. The university offers bachelorís, masterís, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contacts:
Gabrielle DeMarco
(518) 276-6542

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

SUNY Polytechnic Institute Invites the Public to Attend its Popular Statewide 'NANOvember' Series of Outreach and Educational Events October 23rd, 2014

Chip Technology

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NIST offers electronics industry 2 ways to snoop on self-organizing molecules October 22nd, 2014

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Announcements

Iran to Hold 3rd Int'l Engineering Materials, Metallurgy Conference October 25th, 2014

Haydale Secures Exclusive Development and Supply Agreement with Tantec A/S: New reactors to be built and commissioned by Tantec A/S represent another step forward towards the commercialisation of graphene October 24th, 2014

QuantumWise guides the semiconductor industry towards the atomic scale October 24th, 2014

Strengthening thin-film bonds with ultrafast data collection October 23rd, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE