Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > HelioVolt Exceeds 12% Solar Thin Film Efficiency with Rapid, Scalable Printing Process

Abstract:
Industry-Leading CIGS Photovoltaic Cell Efficiency Announced at IEEE Conference

HelioVolt Exceeds 12% Solar Thin Film Efficiency with Rapid, Scalable Printing Process

San Diego, CA | Posted on May 12th, 2008

In results presented at the IEEE Photovoltaic Specialists Conference, HelioVolt Corporation announces that its proprietary FASST® reactive transfer printing process has produced thin film solar cells with 12.2 percent conversion efficiencies in a record setting six minutes. The efficiencies place HelioVolt's Copper Indium Gallium Selenide (CIGS) devices among the highest performing solar thin film products on the market today. HelioVolt is currently optimizing FASST for further efficiency gains and scaling up the process to begin commercial manufacture of thin film solar modules and building integrated solar products.

"In the lab, CIGS is already achieving the highest efficiencies of any thin film solar material. The challenge of course is transferring that efficiency to a high throughput, high yield, low cost process capable of delivering gigawatts worth of quality commercial product," said Dr. BJ Stanbery, CEO and founder of HelioVolt. "We view these high-performance results as an indicator of FASST's potential to meet that need. We're already producing CIGS devices that are comparable with the highest efficiency thin film products on the market today, and we still see plenty of room to improve from here."

Thin film technologies aim to lower the cost of photovoltaic (PV) products by reducing the amount of material required to produce electricity from the sun. HelioVolt's FASST process further reduces costs by manufacturing CIGS thin film products ten to one hundred times more rapidly than competitive processes including co-evaporation and two-stage selenization. Confirmed by independent testing at Colorado State University, the high-throughput printing process delivers a uniform photovoltaic cell with high conversion efficiency, or percentage of sun energy the device converts into electricity. HelioVolt's 12.2 percent efficiency devices consisted of CIGS photovoltaic thin film layer applied to a glass substrate. The FASST process can also be used to print high efficiency, low-cost thin film material directly on glass substrates for solar modules or onto building products including architectural glass and roofing tiles.

Dr. Stanbery will present HelioVolt's efficiency results today during his keynote address at the 33rd IEEE Photovoltaic Specialists Conference, the industry's most respected global gathering of leading scientists and engineers. Delivering a presentation entitled "Entrepreneurship on the Road from Science to Sales," Dr. Stanbery joins David Eaglesham, vice president of technology for First Solar and Richard Swanson, president and chief technical officer of SunPower Corporation in the keynote session.

In October 2007 HelioVolt closed a $101 Million Series B funding round with investments from Masdar Clean Tech Fund, Paladin Capital Group, Sequel Venture Partners, Noventi Ventures, Solúcar Energia, New Enterprise Associates (NEA), Morgan Stanley Principal Investments, Sunton United Energy, Yellowstone Capital and Passport Capital. The company is currently using those funds to scale FASST at its first 20 MW commercial production line in Austin, Texas and pursue its aggressive international expansion goals.

####

About HelioVolt Corporation
HelioVolt Corporation, based in Austin, Texas, is a manufacturer of a new generation of thin film photovoltaic products based on its proprietary FASST® manufacturing process. The company’s low-cost, rapid production methods for CIGS synthesis are protected by nine issued US patents as well as numerous global patents pending. In 2007, HelioVolt raised over $100M in venture financing to fund the company’s move towards volume production and international expansion.

For more information, please click here

Contacts:
Antenna Group (for HelioVolt)
Rosalind Jackson
415-977-1923

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Announcements

UTSA study describes new minimally invasive device to treat cancer and other illnesses: Medicine diffusion capsule could locally treat multiple ailments and diseases over several weeks December 3rd, 2016

Novel Electrode Structure Provides New Promise for Lithium-Sulfur Batteries December 3rd, 2016

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Solar/Photovoltaic

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

Engineers develop new magnetic ink to print self-healing devices that heal in record time November 7th, 2016

Iran to hold intl. school on application of nanomaterials in medicine September 20th, 2016

Tailored probes for atomic force microscopes: 3-D laser lithography enhances microscope for studying nanostructures in biology and engineering/ publication in Applied Physics Letters August 11th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project