Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > ASU researchers synthesize molecule with self-control

Abstract:
Plants have an ambivalent relationship with light. They need it to live, but too much light leads to the increased production of high-energy chemical intermediates that can injure or kill the plant.

ASU researchers synthesize molecule with self-control

Tempe, AZ | Posted on May 12th, 2008

The intermediates do this because the efficient conversion of sunlight into chemical energy cannot keep up with sunlight streaming into the plant.

"The intermediates don't have anywhere to go because the system is jammed up down the line," says ASU chemist Devens Gust. Plants employ a sophisticated process to defend against damage.

To better understand this process, Gust, along with fellow ASU researchers Thomas Moore and Ana Moore, both professors of chemistry and biochemistry, designed a molecule that mimics what happens in nature. They report results with their molecule in the advanced online publication of Nature Nanotechnology (May 4, 2008).

In nature, plants defend against this sunlight overload process using non-photochemical quenching (NPQ). This process drains off the excess light excitation energy as heat so that it cannot generate the destructive high-energy species.

The ASU-designed molecule works in a similar fashion in that it converts absorbed light to electrochemical energy but reduces the efficiency of the conversion as light intensity increases. The ASU-designed molecule has several components including two light gathering antennas - a porphyrin electron donor, a fullerene acceptor and a control unit that reversibly photoisomerizes between a dihydroindolizine (DHI) and a betaine (BT).

When white light (sunlight) shines on a solution of the molecules, light absorbed by the porphyrin (or by the antennas) is converted to electrochemical potential energy. When the white light intensity is increased, the DHI on some molecules change to a different molecular structure, BT, that drains light excitation energy out of the porphyrin and converts it to heat, avoiding the generation of excess electrochemical potential. As the light becomes brighter, more molecules switch to the non-functional form, so that the conversion of light to chemical energy becomes less efficient. The molecule adapts to its environment, regulating its behavior in response to the light intensity.

"One hallmark of living cells is their ability to sense and respond to surrounding conditions," explains Thomas Moore. "In the case of metabolic control this process involves molecular-level recognition events that are translated into control of a chemical process."

"Functionally, this mimics one of the processes in photosynthesis that severely limits the energy conversion efficiency of higher plants," he added. "One way in which this work is important is that by understanding these events at the molecular level one can imagine redesigning photosynthesis to improve energy conversion efficiency and thereby come closer to meeting our energy needs."

The research is also important to one aspect of the exploding field of nanotechnology, that of regulation, Gust adds. Biological systems are known for their ability to engage in adaptive self-regulation. The nanoscale components respond to other nanoscale systems and to external stimuli in order to keep everything in balance and functioning properly. The ASU research shows how a bio-regulation system has been captured in a non-biological molecular scale analog process.

"Achieving such behavior in human-made devices is vital if we are to realize the promise of nanotechnology," adds Gust. "Although the mechanism of control used in the ASU molecule is different from that employed in NPQ, the overall effect is the same as occurs in the natural photosynthetic process."

In addition to Gust, Thomas Moore and Ana Moore, the ASU work was carried out by Stephen Straight, Gerdenis Kodis, Yuichi Terazono and Michael Hambourger.

####

For more information, please click here

Contacts:
Skip Derra

480-965-4823

Copyright © Arizona State University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Organometallics welcomes new editor-in-chief: Paul Chirik, Ph.D. July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Iran to Hold 3rd Int'l Forum on Nanotechnology Economy July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Molecular Nanotechnology

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

University of Illinois researchers demonstrate novel, tunable nanoantennas July 14th, 2014

With 'ribbons' of graphene, width matters: A narrow enough ribbon will transform a high-performance conductor into a semiconductor July 4th, 2014

Shrinky Dinks close the gap for nanowires July 1st, 2014

Discoveries

Researchers create vaccine for dust-mite allergies Main Page Content: Vaccine reduced lung inflammation to allergens in lab and animal tests July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NUS scientists use low cost technique to improve properties and functions of nanomaterials: By 'drawing' micropatterns on nanomaterials using a focused laser beam, scientists could modify properties of nanomaterials for effective applications in photonic and optoelectric applicat July 22nd, 2014

Announcements

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

NIST shows ultrasonically propelled nanorods spin dizzyingly fast July 22nd, 2014

Penn Study: Understanding Graphene’s Electrical Properties on an Atomic Level July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE