Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Scientists demonstrate method for integrating nanowire devices directly onto silicon

The basic structure of the nanowire devices is based on a sandwich geometry in which a nanowire (n-type zinc oxide) is placed between the substrate (heavily doped p-type silicon) and a top metallic contact, using spin-on glass as an insulating spacer layer to prevent the metal contact from shorting to the substrate (as shown in (a) and (b)). This allows for uniform injection of current along the length of the nanowire. A finished wafer using the team's method is shown in (c), with a typical device shown in (d). Note that a stray nanowire intercepts the device on the upper part of (d). The oval feature surrounding the stray nanowire is due to the varying thickness of the spin-on glass film. When a voltage is applied to this device, it emits ultraviolet light (as shown in image (e) obtained with a CCD camera) with a peak wavelength of ~380 nm.

Credit: Courtesy of the lab of Federico Capasso, Harvard School of Engineering and Applied Sciences
The basic structure of the nanowire devices is based on a sandwich geometry in which a nanowire (n-type zinc oxide) is placed between the substrate (heavily doped p-type silicon) and a top metallic contact, using spin-on glass as an insulating spacer layer to prevent the metal contact from shorting to the substrate (as shown in (a) and (b)). This allows for uniform injection of current along the length of the nanowire. A finished wafer using the team's method is shown in (c), with a typical device shown in (d). Note that a stray nanowire intercepts the device on the upper part of (d). The oval feature surrounding the stray nanowire is due to the varying thickness of the spin-on glass film. When a voltage is applied to this device, it emits ultraviolet light (as shown in image (e) obtained with a CCD camera) with a peak wavelength of ~380 nm.

Credit: Courtesy of the lab of Federico Capasso, Harvard School of Engineering and Applied Sciences

Abstract:
Fabrication technique could yield low-cost, scalable nanowire photonic and electronic circuits

Scientists demonstrate method for integrating nanowire devices directly onto silicon

Cambridge, MA | Posted on May 8th, 2008

--- Applied scientists at Harvard University in collaboration with researchers from the German universities of Jena, Gottingen, and Bremen, have developed a new technique for fabricating nanowire photonic and electronic integrated circuits that may one day be suitable for high-volume commercial production.

Spearheaded by graduate student Mariano Zimmler and Federico Capasso, Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering, both of Harvard's School of Engineering and Applied Sciences (SEAS), and Prof. Carsten Ronning of the University of Jena, the findings will be published in Nano Letters. The researchers have filed for U.S. patents covering their invention.

While semiconductor nanowires---rods with an approximate diameter of one-thousandth the width of a human hair---can be easily synthesized in large quantities using inexpensive chemical methods, reliable and controlled strategies for assembling them into functional circuits have posed a major challenge. By incorporating spin-on glass technology, used in Silicon integrated circuits manufacturing, and photolithography, transferring a circuit pattern onto a substrate with light, the team demonstrated a reproducible, high-volume, and low-cost fabrication method for integrating nanowire devices directly onto silicon.

"Because our fabrication technique is independent of the geometrical arrangement of the nanowires on the substrate, we envision further combining the process with one of the several methods already developed for the controlled placement and alignment of nanowires over large areas," said Capasso. "We believe the marriage of these processes will soon provide the necessary control to enable integrated nanowire photonic circuits in a standard manufacturing setting."

The structure of the team's nanowire devices is based on a sandwich geometry: a nanowire is placed between the highly conductive substrate, which functions as a common bottom contact, and a top metallic contact, using spin-on glass as a spacer layer to prevent the metal contact from shorting to the substrate. As a result current can be uniformly injected along the length of the nanowires. These devices can then function as light-emitting diodes, with the color of light determined by the type of semiconductor nanowire used.

To demonstrate the potential scalability of their technique, the team fabricated hundreds of nanoscale ultraviolet light-emitting diodes by using zinc oxide nanowires on a silicon wafer. More broadly, because nanowires can be made of materials commonly used in electronics and photonics, they hold great promise for integrating efficient light emitters, from ultraviolet to infrared, with silicon technology. The team plans to further refine their novel method with an aim towards electrically contacting nanowires over entire wafers.

"Such an advance could lead to the development of a completely new class of integrated circuits, such as large arrays of ultra-small nanoscale lasers that could be designed as high-density optical interconnects or be used for on-chip chemical sensing," said Ronning.

The team's co-authors are postdoctoral fellow Wei Yi and Venkatesh Narayanamurti, John A. and Elizabeth S. Armstrong Professor and dean, both of Harvard's School of Engineering and Applied Sciences; graduate student Daniel Stichtenoth, University of G�ttingen; and postdoctoral fellow Tobias Voss, University of Bremen.

The research was supported by the National Science Foundation (NSF) and the German Research Foundation. The authors also acknowledge the support of two Harvard-based centers, the National Science Foundation Nanoscale Science and Engineering Center (NSEC) and the Center for Nanoscale Systems (CNS), a member of the National Nanotechnology Infrastructure Network (NNIN).

####

For more information, please click here

Contacts:
Michael Patrick Rutter

617-496-3815

Copyright © Harvard University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Chip Technology

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

Two Scientists Receive Grants to Develop New Materials: Chad Mirkin and Monica Olvera de la Cruz recognized by Sherman Fairchild Foundation August 16th, 2017

Surprise discovery in the search for energy efficient information storage August 10th, 2017

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

Nanoelectronics

GLOBALFOUNDRIES Demonstrates 2.5D High-Bandwidth Memory Solution for Data Center, Networking, and Cloud Applications: Solution leverages 2.5D packaging with low-latency, high-bandwidth memory PHY built on FX-14™ ASIC design system August 9th, 2017

GLOBALFOUNDRIES, Silicon Mobility Deliver the Industry’s First Automotive FPCU to Boost Performance for Hybrid and Electric Vehicles: Silicon Mobility and GF’s 55nm LPx -enabled platform, with SST’s highly-reliable SuperFlash® memory technology, boosts automotive performance, ene August 3rd, 2017

Scientists discover new magnet with nearly massless charge carriers July 29th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Discoveries

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

Announcements

The power of perovskite: OIST researchers improve perovskite-based technology in the entire energy cycle, from solar cells harnessing power to LED diodes to light the screens of future electronic devices and other lighting applications August 18th, 2017

Gold nanostars and immunotherapy vaccinate mice against cancer: New treatment cures, vaccinates mouse in small proof-of-concept study August 18th, 2017

Researchers printed graphene-like materials with inkjet August 17th, 2017

Candy cane supercapacitor could enable fast charging of mobile phones August 17th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project