Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > News > New Nanomaterial Doubles CO2 Storage

May 7th, 2008

New Nanomaterial Doubles CO2 Storage

Abstract:
As much as we reduce our current output of CO2 and other greenhouse gases into the atmosphere, it has become apparent that these efforts, while absolutely needed, will only mitigate the effects of global warming, making carbon sequestration as necessary tool in our fight against climate change.

Unfortunately, many popular ideas on how exactly to sequester the CO2 are simply not practical, though some new ones are quite promising. A new team of French researchers, led by Gérard Férey at the University of Versailles, have decided to skip the pumping of CO2 underground, and focus their efforts on nanotechnology, breaking a record in the process. Their new material, dubbed MIL-101, has been officially called "the best carbon sequestration material" bar none. 1m3 is capable of holding 400m3 of gas, compared to the 200m3 that the best commercially available technology can provide.

MIL-101, also known as chromium terephthalate, can accomplish this because its structure is only 2.9 to 3.4 nanometers thick, giving the substance a surface area of over 6000m2 per single gram. The structure is also porous, which allows the small CO2 molecules to become trapped, making it ideal for carbon capture directly from power plants, tailpipes, and smokestacks. The technology also holds great promise for the storage of methane and hydrogen gas, making it a possible candidate for fuel storage in fuel-cell powered vehicles.

Source:
ecogeek.org

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Chemical trickery corrals 'hyperactive' metal-oxide cluster December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Discoveries

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Announcements

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Further improvement of qubit lifetime for quantum computers: New technique removes quasiparticles from superconducting quantum circuits December 9th, 2016

Researchers peer into atom-sized tunnels in hunt for better battery: May improve lithium ion for larger devices, like cars December 8th, 2016

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D: Up-close, real-time, chemical-sensitive 3-D imaging offers clues for reducing cost/improving performance of catalysts for fuel-cell-powered vehicles and other applications December 8th, 2016

Environment

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Semiconductor-free microelectronics are now possible, thanks to metamaterials November 9th, 2016

First time physicists observed and quantified tiny nanoparticle crossing lipid membrane November 7th, 2016

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Fuel Cells

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project