Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Test of maturity for stem cells

Abstract:
Stem cells can differentiate into 220 different types of body cell. The development of these cells can now be systematically observed and investigated with the aid of two new machines that imitate the conditions in the human body with unprecedented accuracy.

Test of maturity for stem cells

Germany | Posted on May 7th, 2008

Test of maturity for stem cells

Stem cells can differentiate into 220 different types of body cell. The development of these cells can now be systematically observed and investigated with the aid of two new machines that imitate the conditions in the human body with unprecedented accuracy.

Stem cells are extremely versatile: They can develop in 220 different ways, transforming themselves into a correspondingly diverse range of specialized body cells. Biologists and medical scientists plan to make use of this differentiation ability to selectively harvest cardiac, skin or nerve cells for the treatment of different diseases. However, the stem cell culture techniques practiced today are not very efficient. What proportion of a mass of stem cells is transformed into which body cells? And in what conditions? "We need devices that keep doing the same thing and thus deliver statistically reliable data," says Professor Günter Fuhr, director of the Fraunhofer Institute for Biomedical Engineering IBMT in St. Ingbert.

Two prototypes of laboratory devices for stem cell differentiation enable the complex careers of stem cells to be systematically examined for the first time ever. These devices are the result of the international project ‘CellPROM' - ‘Cell Programming by Nanoscaled Devices' - which was funded by the European Union to the tune of 16.7 million euros and coordinated by the IBMT. "The type of cell culture used until now is too far removed from the natural situation," says CellPROM project coordinator Daniel Schmitt - for in the body, the stem cells come into contact with solute nutrients, messenger RNAs and a large number of different cells. Millions of proteins rest in or on the cell membranes and excite the stem cells to transform themselves into specialized cells. "We want to provide the stem cells in the laboratory with a surface that is as similar as possible to the cell membranes," explains Daniel Schmitt. "To this end, the consortium developed a variety of methods by which different biomolecules can be efficiently applied to cell-compatible surfaces."

In the two machines - MagnaLab and NazcaLab - the stem cells are brought into contact with the signal factors in a pre-defined manner. In MagnaLab, several hundred cells grow on culture substrates that are coated with biomolecules. In NazcaLab, large numbers of individual cells, washed around by a nutrient solution, float along parallel channels where they encounter micro-particles that are charged with signal factors. "We use a microscope and a camera to document in fast motion how individual cells divide and differentiate," says Schmitt. The researchers demonstrated on about 20 different cell models that the multi-talents can be stimulated by surface signals to transform themselves into specialized cells.

####

About Fraunhofer Society
The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

For more information, please click here

Contacts:
Dipl.-Phys. Daniel Schmitt
Phone: +49 6894 980-120
Fax: +49 6894 980-400
Send an e-mail
Fraunhofer-Institut für Biomedizinische Technik
IBMT
Ensheimer Straße 48
66386 St. Ingbert

Copyright © Fraunhofer Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Nanomedicine

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Learning with light: New system allows optical “deep learning”: Neural networks could be implemented more quickly using new photonic technology June 12th, 2017

Mussels add muscle to biocompatible fibers: Rice University chemists develop hydrogel strings using compound found in sea creatures June 9th, 2017

Making vessels leaky on demand could aid drug delivery:Rice University scientists use magnets and nanoparticles to open, close gaps in blood vessels June 8th, 2017

Announcements

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Research accelerates quest for quicker, longer-lasting electronics: UC Riverside-led research makes topological insulators magnetic well above room temperatures June 25th, 2017

U.S. Air Force Research Lab Taps IBM to Build Brain-Inspired AI Supercomputing System: Equal to 64 million neurons, new neurosynaptic supercomputing system will power complex AI tasks at unprecedented speed and energy efficiency June 23rd, 2017

Rice U. chemists create 3-D printed graphene foam June 22nd, 2017

Tools

Researchers developed nanoparticle based contrast agent for dual modal imaging of cancer June 21st, 2017

Oxford Instruments congratulates Lancaster University for inaugurating the IsoLab, built for studying quantum systems June 20th, 2017

Changing the color of laser light on the femtosecond time scale: How BiCoO3 achieves second harmonic generation June 14th, 2017

Leti Announces Two New Tools for Improving Transportation Comfort, Safety and Efficiency: Wearable Device Measures Stress Responses for Travelers, Pilots and Truck Drivers, While Smartphone App Provides Transit Agencies Broad Data on Transport Modes June 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project