Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Test of maturity for stem cells

Abstract:
Stem cells can differentiate into 220 different types of body cell. The development of these cells can now be systematically observed and investigated with the aid of two new machines that imitate the conditions in the human body with unprecedented accuracy.

Test of maturity for stem cells

Germany | Posted on May 7th, 2008

Test of maturity for stem cells

Stem cells can differentiate into 220 different types of body cell. The development of these cells can now be systematically observed and investigated with the aid of two new machines that imitate the conditions in the human body with unprecedented accuracy.

Stem cells are extremely versatile: They can develop in 220 different ways, transforming themselves into a correspondingly diverse range of specialized body cells. Biologists and medical scientists plan to make use of this differentiation ability to selectively harvest cardiac, skin or nerve cells for the treatment of different diseases. However, the stem cell culture techniques practiced today are not very efficient. What proportion of a mass of stem cells is transformed into which body cells? And in what conditions? "We need devices that keep doing the same thing and thus deliver statistically reliable data," says Professor Günter Fuhr, director of the Fraunhofer Institute for Biomedical Engineering IBMT in St. Ingbert.

Two prototypes of laboratory devices for stem cell differentiation enable the complex careers of stem cells to be systematically examined for the first time ever. These devices are the result of the international project ‘CellPROM' - ‘Cell Programming by Nanoscaled Devices' - which was funded by the European Union to the tune of 16.7 million euros and coordinated by the IBMT. "The type of cell culture used until now is too far removed from the natural situation," says CellPROM project coordinator Daniel Schmitt - for in the body, the stem cells come into contact with solute nutrients, messenger RNAs and a large number of different cells. Millions of proteins rest in or on the cell membranes and excite the stem cells to transform themselves into specialized cells. "We want to provide the stem cells in the laboratory with a surface that is as similar as possible to the cell membranes," explains Daniel Schmitt. "To this end, the consortium developed a variety of methods by which different biomolecules can be efficiently applied to cell-compatible surfaces."

In the two machines - MagnaLab and NazcaLab - the stem cells are brought into contact with the signal factors in a pre-defined manner. In MagnaLab, several hundred cells grow on culture substrates that are coated with biomolecules. In NazcaLab, large numbers of individual cells, washed around by a nutrient solution, float along parallel channels where they encounter micro-particles that are charged with signal factors. "We use a microscope and a camera to document in fast motion how individual cells divide and differentiate," says Schmitt. The researchers demonstrated on about 20 different cell models that the multi-talents can be stimulated by surface signals to transform themselves into specialized cells.

####

About Fraunhofer Society
The Fraunhofer-Gesellschaft undertakes applied research of direct utility to private and public enterprise and of wide benefit to society.

For more information, please click here

Contacts:
Dipl.-Phys. Daniel Schmitt
Phone: +49 6894 980-120
Fax: +49 6894 980-400
Send an e-mail
Fraunhofer-Institut für Biomedizinische Technik
IBMT
Ensheimer Straße 48
66386 St. Ingbert

Copyright © Fraunhofer Society

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Govt.-Legislation/Regulation/Funding/Policy

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Nanomedicine

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

Cloaked DNA nanodevices survive pilot mission: Successful foray opens door to virus-like DNA nanodevices that could diagnose diseased tissues and manufacture drugs to treat them April 22nd, 2014

Berkeley Lab Researchers Demonstrate First Size-based Chromatography Technique for the Study of Living Cells April 22nd, 2014

Amino-functionalized carbon nanotubes act as a carrier for nerve growth factor April 21st, 2014

Announcements

Study finds long-term survival of human neural stem cells transplanted into primate brain April 23rd, 2014

High-Performance, Low-Cost Ultracapacitors Built with Graphene and Carbon Nanotubes: Future devices based on technology could bridge gap between batteries and conventional capacitors in portable electronics and hybrid electric vehicles April 23rd, 2014

Guo Lab Shows Potential of RNA as Heat-resistant Polymer Material for Nanoarchitectures April 23rd, 2014

National Space Society Congratulates SpaceX on the Success of CRS-3 and the First Flight of the Falcon 9R April 22nd, 2014

Tools

MRI, on a molecular scale: Researchers develop system that could one day peer into the atomic structure of individual molecules April 20th, 2014

Oxford Instruments Asylum Research Introduces the MFP-3D InfinityTM AFM Featuring Powerful New Capabilities and Stunning High Performance April 18th, 2014

More effective kidney stone treatment, from the macroscopic to the nanoscale April 17th, 2014

Scientists Capture Ultrafast Snapshots of Light-Driven Superconductivity: X-rays reveal how rapidly vanishing 'charge stripes' may be behind laser-induced high-temperature superconductivity April 16th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE