Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Dolomite's microfluidics technology enables nanoparticle synthesis

Abstract:
UK microfluidics specialists Dolomite have announced that they have been working with Newcastle University as part of a project to explore the application of microfluidics for the synthesis of nanoparticles for use in biochemistry.

Dolomite's microfluidics technology enables nanoparticle synthesis

UK | Posted on May 1st, 2008

Microfluidics, often called lab-on-a-chip, is an exciting new field of science and engineering that enables very small-scale fluid control and analysis, allowing instrument manufacturers to develop smaller, more cost-effective and more powerful systems. With lab-on-a-chip technology, entire complex chemical management and analysis systems are created in a microfluidic chip and interfaced with, for example, electronic and optical detection systems.

For this project Dolomite created a custom glass microchip with multiple reaction chambers. This was manufactured undertaking processes such as lithographic patterning, isotropic etching of glass substrates and the accurate thermal bonding of glass substrates.

"The manufacture of this type of device is a very complex process," said Dr Gillian Davis, Commercial Director at Dolomite. "However, microfluidics offers high efficiency, versatility, speed, and economy of analysis. This technology also has a very low consumption of reagents and analytes, so it brings both cost and environmental benefits to bioscience and drug discovery projects. Furthermore, its greatest advantage is the ability to perform parallel-array or multidimensional types of analyses in a small localised environment."

The nanoparticle synthesis project at Newcastle University is headed by Mike Loughran, Team Leader Microfluidics & Sensor Technologies, at the School of Chemical Engineering and Advanced Materials. Working with Dolomite and Dr Andrea Beck from HAS Budapest, Mike Loughran has been exploring, how in the future, scientists will be able to control specific chemical reactions in a localised microchip environment, enabling different nanoparticles to be designed for a specific purpose e.g the synthesis of silicon based fluorescent nanoparticles (quantum dots) to label biomolecules for diagnostic assays, polymeric nanosensors for intracellular analysis and drug delivery, and catalytic nanoparticles for specific chemistries or for purification by adsorbing pollutants.

"I am very happy with the professionalism and attention to detail that I have received from Dolomite," said Mike. "In particular I am very impressed with the speed of the processing, alignment and bonding of the glass microchips I received from Dolomite. Previously I waited months for clean room glass processing. With Dolomite it was completed within weeks and to a much higher standard."

Dolomite is now a worldwide leader in this field. So much so, that in 2005 they won funding from the UK Department of Trade and Industry's Micro and Nano Technology (MNT) Manufacturing Initiative. This £2m funding has allowed Dolomite to establish excellent microfabrication facilities, with cleanrooms, precision glass processing facilities and applications laboratories. In addition to this, Dolomite has managed to attract top quality engineering and scientific staff with strong backgrounds across the broad range of disciplines required for success in bringing microfluidics applications to the market, including; chemistry, biotechnology, control system development, electronics, physics and instrument design and supply.

Dolomite will be presenting their technology at Bristol on May 13th , www.embedded-masterclass.com

####

About Dolomite
Established in 2005 as the world’s first microfluidic application centre, Dolomite is focussed on working with customers to turn their concepts for microfluidic applications into reality. With an in-depth understanding of chemistry and the life sciences, expertise in microfabrication and microfluidics, together with instrument design and development capabilities, Dolomite is enabling some of the world’s top providers in fields as diverse as environmental monitoring, drug discovery and forensic science to deliver microfluidic systems to the market place. To find out more about Dolomite, please visit – www.dolomite-microfluidics.com


School of Chemical Engineering & Advanced Materials at Newcastle University provides world class research, undergraduate and postgraduate training on how to meet increasing demand for energy and raw materials, whilst protecting the environment, as well as developing novel materials, production processes and monitoring and control strategies. The School has state-of-the-art labs and facilities which have benefited from considerable investment in recent years. Further details are available at the school website www.ncl.ac.uk/ceam


For more information, please click here

Contacts:
Dolomite Contact:
Dr Gillian Davis
Commercial Director
Tel: +44 1763 242491


Media Contact:
Richard Blackburn
Energi Technical Limited
Tel: +44 1603 278228

Copyright © Dolomite

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Researchers develop microbubble scrubber to destroy dangerous biofilms September 19th, 2018

Microfluidics/Nanofluidics

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Academic/Education

The Institute of Applied Physics at the University of Tsukuba near Tokyo in Japan uses Deben's ARM2 detector to better understand catalytic reaction mechanisms June 27th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

SUNY Poly Professor Eric Lifshin Selected for ‘Fellow of the Microanalysis Society’ Position for Significant Contributions to Microanalysis June 13th, 2018

Grand Opening of UC Irvine Materials Research Institute (IMRI) to Spotlight JEOL Center for Nanoscale Solutions: Renowned Materials Scientists to Present at the 1st International Symposium on Advanced Microscopy and Spectroscopy (ISAMS) April 18th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti Announces EU Project to Develop Powerful, Inexpensive Sensors with Photonic Integrated Circuits: REDFINCH Members Initially Targeting Applications for Gas Detection and Analysis For Refineries & Petrochemical Industry and Protein Analysis for Dairy Industry September 19th, 2018

Leti & EFI Aim to Dramatically Improve Reliability & Speed of Low-Cost Electronic Devices for Autos: Project Will Extend Model Predictive Control Technique to Microcontrollers, Digital Signal Processors and Other Devices that Lack Powerful Computation Capabilities September 18th, 2018

Silvaco, Purdue team up to bring scalable atomistic TCAD solutions for next generation semiconductor devices and materials August 24th, 2018

Leti & CMP Announce World’s First Multi-Project-Wafer Service with Integrated Silicon OxRAM: Oxide-Based Resistive Ram Memory Platform Development for Backend Memories To Offer Non-Volatility Associated with Embedded Designs August 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project