Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Too much technology may be killing beneficial bacteria

Abstract:
MU engineer concerned about environmental impact of silver nanoparticles in wastewater treatment

Too much technology may be killing beneficial bacteria

Columbia, MO | Posted on April 29th, 2008

Too much of a good thing could be harmful to the environment. For years, scientists have known about silver's ability to kill harmful bacteria and, recently, have used this knowledge to create consumer products containing silver nanoparticles. Now, a University of Missouri researcher has found that silver nanoparticles also may destroy benign bacteria that are used to remove ammonia from wastewater treatment systems. The study was funded by a grant from the National Science Foundation.

Several products containing silver nanoparticles already are on the market, including socks containing silver nanoparticles designed to inhibit odor-causing bacteria and high-tech, energy-efficient washing machines that disinfect clothes by generating the tiny particles. The positive effects of that technology may be overshadowed by the potential negative environmental impact.

"Because of the increasing use of silver nanoparticles in consumer products, the risk that this material will be released into sewage lines, wastewater treatment facilities, and, eventually, to rivers, streams and lakes is of concern," said Zhiqiang Hu, assistant professor of civil and environmental engineering in MU's College of Engineering. "We found that silver nanoparticles are extremely toxic. The nanoparticles destroy the benign species of bacteria that are used for wastewater treatment. It basically halts the reproduction activity of the good bacteria."

Hu said silver nanoparticles generate more unique chemicals, known as highly reactive oxygen species, than do larger forms of silver. These oxygen species chemicals likely inhibit bacterial growth. For example, the use of wastewater treatment 'sludge' as land-application fertilizer is a common practice, according to Hu. If high levels of silver nanoparticles are present in the sludge, soil used to grow food crops may be harmed.

Hu is launching a second study to determine the levels at which the presence of silver nanoparticles become toxic. He will determine how silver nanoparticles affect wastewater treatment processes by introducing nanomaterial into wastewater and sludge. He will then measure microbial growth to determine the nanosilver levels that harm wastewater treatment and sludge digestion.

The Water Environment Research Foundation recently awarded Hu $150,000 to determine when silver nanoparticles start to impair wastewater treatment. Hu said nanoparticles in wastewater can be better managed and regulated. Work on the follow-up research should be completed by 2010.

The silver nanoparticle research conducted by Hu and his graduate student, Okkyoung Choi, was recently published in Water Research and Environmental Science & Technology.

####

For more information, please click here

Contacts:
Bryan E. Jones

573-882-9144

Copyright © University of Missouri-Columbia

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Govt.-Legislation/Regulation/Funding/Policy

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

Announcements

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Tuning into quantum: Scientists unlock signal frequency control of precision atom qubits July 16th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Environment

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

A nanotech sensor that turns molecular fingerprints into bar codes June 7th, 2018

Safety-Nanoparticles/Risk management

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

Nanomaterials could mean more algae outbreaks for wetlands, waterways: High tech metal particles may inadvertently take a toll on aquatic life June 26th, 2018

NIOSH Releases New Nanotechnology Workplace Design Recommendations March 13th, 2018

How harmful are nano-copper and anti-fungal combinations in the waterways? October 27th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

FEFU scientists reported on toxicity of carbon and silicon nanotubes and carbon nanofibers: Nanoparticles with a wide range of applying, including medicine, damage cells of microalgae Heterosigma akashivo badly. July 18th, 2018

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

Nano-kirigami: 'Paper-cut' provides model for 3D intelligent nanofabrication July 13th, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project