Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Piezo Ceramic Motors Keep Shrinking

Abstract:
PI's patented P-653 piezo motor linear slide is significantly smaller than other miniature linear stages and provides significantly higher velocities and resolution. This true linear motor system (no conversion of rotation) consists of only 4 parts and can replace classical drive elements like miniaturized motor/lead screw systems or other linear motors, which P-653 outclasses with its speed of up to 200 mm/sec (8"/sec) and auto-locking feature.

Piezo Ceramic Motors Keep Shrinking

Auburn, MA | Posted on April 29th, 2008

Measuring only 8.0mm in length, the new P-653 stage offers a travel range of 2mm and sub-micron resolution, combined with a high holding force of 0.15 N (0.5 oz) -- state-of-the-art figures for a stage of these minute dimensions.

Datasheet & More Information
www.physikinstrumente.com/en/pdf/P653_Datasheet.pdf

High Resolution Product Image at:
www.pi-usa.us/PRL/PI_P653_MiniMotor.jpg

Easy Integration
Integration of the P-653 in an application is simple because the moving slider and the piezo motor are delivered assembled as a unit and already mounted on a PCB driver board requiring only 5 VDC supply voltage.

Typical Applications
P-653-series PILine® piezoelectric ultrasonic motor drives are ideal for OEM applications where quantities are high and space is at a premium. The systems were optimized for moving small objects such as optical fibers, micro-optics, or micro-electro-mechanical elements fast and precisely. These non-magnetic ceramic motors (no lubricants!) can also be used in medical applications,

Features & Advantages of the Ceramic Miniature Motors
- True Linear Motor Slide / No Rotary Conversion Losses
- Fast: Velocity up to 200 mm/s, Millisecond Responsiveness
- Self Locking; Smaller, Faster, Fewer Components than Conventional Motors
- Travel Range 2 mm, Force Generation to 0.15 N
- Cost-Effective OEM Drive for High Quantity-Applications
- Preassembled and Mounted on a PCB Board
- Very Compact: Piezomotor Drive is Only 8 mm Long

Simple Control
Motion is controlled by TTL voltage pulses applied to the driver electronics. The self adjusting driver creates the high-frequency, nanometer level oscillations (~500 kHz) that make the ultrasonic ceramic motor move.

Working Principle of PILine® Piezo Ceramic Linear Motors
PILine® linear piezomotors are based on a, patented ultrasonic drive. At the heart of the system is a rectangular monolithic piezoceramic plate (the stator), segmented on one side by two electrodes. Depending on the desired direction of motion, the left or right electrode of the piezoceramic plate is excited to produce high-frequency eigenmode oscillations of hundreds of kilohertz. PILine® motors are vacuum compatible, non-magnetic and self-locking.

####

About PI (Physik Instrumente) L.P.
PI is a leading manufacturer of precision motion-control equipment for photonics, bio-nanotechnology & semiconductor applications. PI has been developing and manufacturing standard & custom precision products with piezoceramic and electromagnetic drives for 35+ years. The company has been ISO 9001 certified since 1994 and provides innovative, high-quality solutions for OEM and research. PI is present worldwide with eight subsidiaries and total staff of 450+.

For more information, please click here

Contacts:
Stefan Vorndran
Dir. Corp. Product Marketing & Communications
-----------------------------
PI (Physik Instrumente) L.P.
16 Albert St.
Auburn, MA 01501

Tel: 508-832-3456,
Fax: 508-832-0506
www.pi.ws
www.pi-usa.us

Copyright © PI (Physik Instrumente) L.P.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Announcements

Searching for errors in the quantum world September 21st, 2018

Viral RNA sensing: Optical detection of picomolar concentrations of RNA using switches in plasmonic chirality September 21st, 2018

UT engineers develop first method for controlling nanomotors: Breakthrough for nanotechnology as UT engineers develop first method for switching the mechanical motion of nanomotors September 21st, 2018

Nanobiotix: Update on Head and Neck Phase I/II Trial with NBTXR3 and Other program data presented at ImmunoRad 2018 September 20th, 2018

Tools

Carbon nanodots do an ultrafine job with in vitro lung tissue: New experiments highlight the role of charge and size when it comes to carbon nanodots that mimic the effect of nanoscale pollution particles on the human lung. September 12th, 2018

Terahertz spectroscopy enters the single-molecule regime September 7th, 2018

Mirrorcle Demonstrates MEMS-based Programmable Light Source at CES and PW18 August 30th, 2018

Stress-free ALD from Picosun August 28th, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project