Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Copper nanowires grown by new process create long-lasting displays

Abstract:
A new low-temperature, catalyst-free technique for growing copper nanowires has been developed by researchers at the University of Illinois. The copper nanowires could serve as interconnects in electronic device fabrication and as electron emitters in a television-like, very thin flat-panel display known as a field-emission display.

Copper nanowires grown by new process create long-lasting displays

Urbana-Champaign, IL | Posted on April 29th, 2008

"We can grow forests of freestanding copper nanowires of controlled diameter and length, suitable for integration into electronic devices," said Kyekyoon (Kevin) Kim, a professor of electrical and computer engineering.

"The copper nanowires are grown on a variety of surfaces, including glass, metal and plastic by chemical vapor deposition from a precursor," said Hyungsoo Choi, a research professor in the Micro and Nanotechnology Laboratory and in the department of electrical and computer engineering. "The patented growth process is compatible with contemporary silicon-processing protocols."

The researchers describe the nanowires, the growth process, and a proof-of-principle field-emission display in a paper accepted for publication in the journal Advanced Materials, and posted on its Web site.

Typically, the nanowires of 70 to 250 nanometers in diameter are grown on a silicon substrate at temperatures of 200 to 300 degrees Celsius and require no seed or catalyst. The size of the nanowires is controlled by the processing conditions, such as substrate, substrate temperature, deposition time and precursor feeding rate. The columnar, five-sided nanowires terminate in sharp, pentagonal tips that facilitate electron emission.

To demonstrate the practicability of the low-temperature growth process, the researchers first grew an array of copper nanowires on a patterned silicon substrate. Then they fashioned a field-emission display based on the array�s bundles of nanowires.

In a field-emission display, electrons emitted from the nanowire tips strike a phosphor coating to produce an image. Because the researchers used a bundle of nanowires for each pixel in their display, the failure of a few nanowires will not ruin the device.

"The emission characteristics of the copper nanowires in our proof-of-principle field-emission display were very good," said Kim, who also is affiliated with the U. of I.'s department of materials science and engineering, department of bioengineering, department of nuclear, plasma and radiological engineering, Beckman Institute, Micro and Nanotechnology Laboratory, and the Institute for Genomic Biology. "Our experimental results suggest bundled nanowires could lead to longer lasting field-emission displays."

In addition to working on flexible displays made from copper nanowires grown on bendable plastic, the researchers are also working on silver nanowires.

With Kim and Choi, co-authors of the paper are graduate student and lead author Chang Wook Kim, graduate student Wenhua Gu, postdoctoral research associate Martha Briceno, and professor and head of materials science and engineering Ian Robertson.

Funding was provided by the University of Illinois. Characterization of the samples was conducted at the university's Center for Microanalysis of Materials, which is partially funded by the U.S. Department of Energy.

####

For more information, please click here

Contacts:
James E. Kloeppel

217-244-1073

Copyright © University of Illinois at Urbana-Champaign

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

GLOBALFOUNDRIES and Catena Partner to Provide Next-Generation RF Connectivity Solutions for Growing Wireless Markets: Catena Wi-Fi and Bluetooth RF technologies available on GLOBALFOUNDRIES 28nm Super Low Power Process technology September 3rd, 2015

Display technology/LEDs/SS Lighting/OLEDs

Tongfang Global and QD Vision Partner to Bring Wide Color Gamut to Global Television Lines: Color IQTM quantum dots help boost company’s focus on superior color reproduction September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Govt.-Legislation/Regulation/Funding/Policy

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Reversible Writing with Light: Self-assembling nanoparticles take their cues from their surroundings September 3rd, 2015

Nanoelectronics

Turning clothing into information displays September 2nd, 2015

Phagraphene, a 'relative' of graphene, discovered September 2nd, 2015

Nanotechnology that will impact the Security & Defense sectors to be discussed at NanoSD2015 conference August 25th, 2015

'Quantum dot' technology may help light the future August 19th, 2015

Discoveries

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

QEOS and GLOBALFOUNDRIES to Offer Industry’s First CMOS Platform for MillimeterWave Markets: GLOBALSOLUTIONSSM Partnership will enable next-generation wireless technologies for applications in IoT, 5G and automotive September 3rd, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

Announcements

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

Magnetic wormhole connecting 2 regions of space created for the first time: The device could have applications in medicine, opening up ways to make MRIs more comfortable for patients September 4th, 2015

Making nanowires from protein and DNA September 3rd, 2015

Making fuel from light: Argonne research sheds light on photosynthesis and creation of solar fuel September 3rd, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic