Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > US researchers have built a proto-prototype nano assembler

Abstract:
Are nanobots on their way?

US researchers have built a proto-prototype nano assembler

USA | Posted on April 28th, 2008

The first real steps towards building a microscopic device that can construct nano machines have been taken by US researchers. Writing in the peer-reviewed publication, International Journal of Nanomanufacturing from Inderscience Publishers, researchers describe an early prototype for a nanoassembler.

In his 1986 book, The Engines of Creation, K Eric Drexler set down the long-term aim of nanotechnology - to create an assembler, a microscopic device, a robot, that could construct yet smaller devices from individual atoms and molecules.

For the last two decades, those researchers who recognized the potential have taken diminutive steps towards such a nanoassembler. Those taking the top-down approach have seen the manipulative power of the atomic force microscope (AFM), a machine that can observe and handle single atoms, as one solution. Those taking the bottom-up approach are using chemistry to build molecular machinery.

However, neither the top-down nor the bottom-up approach is yet to fulfill Drexler's prophecy of functional nanobots that can construct other machines on a scale of just a few billionths of a meter.

Jason Gorman of the Intelligent Systems Division at the US government's National Institute of Standards and Technology (NIST) concedes that, "Nanoassembly is extremely challenging." Yet the rewards could be enormous with the ultimate potential of creating a technology that can construct almost any material from atoms and molecules from super-strong but incredibly lightweight construction materials to a molecular computer or even nanobots that can make other nanobots to solve global problems, such as food, water, and energy shortages.

Gorman and his colleagues at NIST have taken a novel approach to building a nanoassembler and reveal details in a forthcoming issue of the International Journal of Nanomanufacturing. "Our demonstration is still a work in progress," says Gorman, "you might describe it as a 'proto-prototype' for a nanoassembler."

AFM is the most commonly employed approach for top-down nanomanipulation research, explains Gorman. However, AFM suffers from a number limitations, as the nanoparticles stick together during manipulation and cannot be lifted from the substrate. This means that nanodevices constructed using AFM may be aesthetically pleasing and provide insights into what might be achievable but it cannot build practical nano machines.

The NIST system consists of four Microelectromechanical Systems (MEMS) devices positioned around a centrally located port on a chip into which the starting materials can be placed Each nanomanipulator is composed of positioning mechanism with an attached nanoprobe. By simultaneously controlling the position of each of these nanoprobes, the team can use them to cooperatively assemble a complex structure on a very small scale. "If successful, this project will result in an on-chip nanomanufacturing system that would be the first of its kind," says Gorman.

"Our micro-scale nanoassembly system is designed for real-time imaging of the nanomanipulation procedures using a scanning electron microscope," explains Gorman, "and multiple nanoprobes can be used to grasp nanostructures in a cooperative manner to enable complex assembly operations." Importantly, once the team has optimized their design they anticipate that nanoassembly systems could be made for around $400 per chip at present costs. This is thousands of times cheaper than macro-scale systems such as the AFM.

Gorman points out that it should be possible to have multiple nanoassemblers working simultaneously to manufacture next generation nanoelectronics. At the moment, his team is interested in developing the platform for scientists and engineers to make cutting edge discoveries in nanotechnology. "Very few effective tools exist for manipulation and assembly at the nano-scale, thereby limiting the growth of this critical field," he says.

"The work described in the IJNM paper is somewhat preliminary and focuses on the design and characterization of the micro-scale nanomanipulator sub-components," adds Gorman, "We are currently fabricating a somewhat revised micro-scale nanoassembly system that we believe will be capable of manipulating nanoparticles by the end of the summer," Gorman says, "We will publishing those results once they are available."

Gorman's work appears in detail in a forthcoming issue of the International Journal of Nanomanufacturing - "Design of an on-chip microscale nanoassembly system", Vol 1, Issue 6, pp 710-721

####

For more information, please click here

Contacts:
Jason Gorman

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

Possible Futures

GS7 Graphene Sensor maybe Solution in Fight Against Cancer January 25th, 2015

Nanotechnology in Energy Applications Market Research Report 2014-2018: Radiant Insights, Inc January 15th, 2015

'Mind the gap' between atomically thin materials December 23rd, 2014

A novel method for identifying the body’s ‘noisiest’ networks November 19th, 2014

Molecular Nanotechnology

Stomach acid-powered micromotors get their first test in a living animal January 27th, 2015

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Going with the flow January 16th, 2015

From the bottom up: Manipulating nanoribbons at the molecular level: Berkeley Lab and UC Berkeley team engineers the shape and properties of nanoscale strips of graphene January 12th, 2015

Chip Technology

Researchers Make Magnetic Graphene: UC Riverside research could lead to new multi-functional electronic devices January 27th, 2015

Nanometrics to Present at the Stifel 2015 Technology, Internet and Media Conference January 27th, 2015

New pathway to valleytronics January 27th, 2015

Entanglement on a chip: Breakthrough promises secure communications and faster computers January 27th, 2015

Nanoelectronics

Electronic circuits with reconfigurable pathways closer to reality January 26th, 2015

Rice-sized laser, powered one electron at a time, bodes well for quantum computing January 15th, 2015

Rapid journey through a crystal lattice: Researchers measure how fast electrons move through single atomic layers January 14th, 2015

A new step towards using graphene in electronic applications January 14th, 2015

Discoveries

Detecting chemical weapons with a color-changing film January 28th, 2015

Joint international research project leads to a breakthrough in terahertz spectroscopy January 28th, 2015

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

Announcements

Iranian Researchers Planning to Produce Edible Insulin January 28th, 2015

Nanoparticles that deliver oligonucleotide drugs into cells described in Nucleic Acid Therapeutics January 28th, 2015

'Bulletproof' battery: Kevlar membrane for safer, thinner lithium rechargeables January 28th, 2015

Spider electro-combs its sticky nano-filaments January 28th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE