Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NRC: Government of Canada Supports World-Class Research in Nanotechnology

Abstract:
Today Royal Galipeau, Member of Parliament for Ottawa-Orleans and Deputy Chair of Committees of the Whole House, on behalf of the Honourable Jim Prentice, Minister of Industry and Minister responsible for the National Research Council of Canada (NRC), the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Business Development Bank of Canada (BDC), announced the winners of a special $15-million nanotechnology research funding competition. Five projects will be funded over three years. BDC assessed the commercial potential of the proposed projects and will help the researchers move their technologies toward commercialization.

NRC: Government of Canada Supports World-Class Research in Nanotechnology

OTTAWA, ON, Canada | Posted on April 25th, 2008

"Canada already has considerable expertise in the field of nanotechnology, and the government is ensuring that our country takes its place among the most innovative nations of the world. It is precisely this kind of effort that was envisioned by the government's Science and Technology Strategy announced last year by Prime Minister Stephen Harper," said Mr. Galipeau. "This investment will help researchers turn ideas into innovations that will protect our environment, improve our health, enhance communications and successfully address other issues for the benefit of all Canadians."

The five winning teams combine the expertise of NRC researchers from several disciplines with collaborators from 14 academic institutions: Concordia University, Ecole Polytechnique de Montreal, McGill University, Queen's University, Simon Fraser University, Universite Laval, Universite de Sherbrooke, University of Alberta and Concordia University College of Alberta, University of British Columbia, University of Ottawa, University of Toronto, University of Victoria and University of Waterloo. Each research team has also secured industry support.

"By supporting research excellence and encouraging the commercialization of ideas, the Government of Canada is helping researchers develop leading-edge technologies that will improve Canada's productivity, create high-quality jobs for Canadians and allow us to compete with the best in the world," said Mr. Galipeau.

Budget 2008 provides an additional $650 million over the next three years to secure Canada's leadership in the global marketplace through research and innovation. In fact, the last three budgets combined have added more than $2.3 billion in new funding for science and technology.

BACKGROUNDER

NRC-NSERC-BDC Nanotechnology Funding Competition Results

The Funding Opportunity

Canadian researchers with expertise in nanotechnology were invited to compete for project funds through a unique nanotechnology R&D initiative, as announced in 2007.

The National Research Council of Canada (NRC) and the Natural Sciences and Engineering Research Council of Canada (NSERC) are providing $15 million to researchers over three years to fund five nanotechnology R&D projects. The Business Development Bank of Canada (BDC) helped assess the proposals, specifically for the commercial potential of the resulting technologies.

NSERC and NRC are both providing $7.5 million. Each project will receive approximately $3 million.

The Purpose of the Initiative

The NRC-NSERC-BDC Nanotechnology Initiative expresses the intent of Canada's federal Science and Technology Strategy by supporting collaborative research in a field of technology where Canada already has considerable expertise and can become a world leader. It brings together nanotechnology researchers at NRC and at several of Canada's universities to work on nanotechnology in fields that are Canadian priorities: cleaner energy, cleaner environment, and information and communication technology. It also provides the support required to commercialize the emerging technologies, one of the biggest challenges that innovators face in Canada.

About the winning teams

Two winning teams will develop solar cells that are significantly more efficient and less expensive than existing technologies. One will create solar cells that incorporate "quantum dots," artificial atoms on crystalline semiconductor surfaces. The other will enhance solar cell efficiency through novel polymeric nano-composite semiconductor materials.

Another team plans to develop quantum cryptography, a technology based on quantum light theory that could pave the way to the ultimate security solution for information processing and data protection.

A fourth winning team will develop laser-based instrumentation to characterize nano-aerosols, known to worsen air quality and cause cardiovascular, respiratory, and allergic distress. Currently there is no real-time instrumentation to measure the size, concentration, and composition of nano-aerosols, or to assess their impact. And the fifth team will develop strong and lightweight nanocomposite materials for the transportation, construction and packaging industries.

The Winning Projects

Each winning project will be conducted by a team of NRC and academic researchers, and will have participation from a Canadian-based industrial partner intent on exploiting the resulting nanotechnology. Project summaries follow.

1. SUNRISE: Semiconductors Using Nanostructures for Record Increases in Solar-Cell Efficiency

Context: Solar cells are not yet widely used because they are not sufficiently efficient or cost-effective as a primary source of electricity in homes and businesses. The proposed research will develop a new class of solar cells up to 10% more efficient, potentially making solar cells attractive for widespread use.

Objectives: Optimize a design for solar cells using quantum dots on crystalline semiconductor surfaces, which will absorb sunlight far more efficiently than existing solar cell technology. Integrate the optimized solar cells into a concentrator to boost solar intensity up to 500 times, and measure the performance of the integrated assembly in real-world conditions. Provide receptor companies with a marketable technology.

Team: Researchers from the Universite de Sherbrooke and the University of Ottawa will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS) and the NRC Institute for Research in Construction (NRC-IRC), in Ottawa.

2.Polymeric/inorganic semiconductor nano-composite materials for low cost photovoltaic applications

Context: Despite progress in increasing cell power conversion efficiency, the organic photovoltaic (PV) industry is still in its infancy, and the power conversion efficiency is too low for market entry. If solar energy is to compete with fossil fuels as a major source of energy, the cost per watt must be dramatically reduced. Polymer-based photovoltaic technology is promising for producing low-cost solar cells. Significant research in materials development will help to overcome critical issues related to the required properties of organic semiconductor materials.

Objectives: Increase solar cell conversion efficiency and affordability by developing polymer and inorganic semiconductor nano-composite materials with novel absorption properties. PV systems built on this technology will accelerate the adoption of solar power systems by enhancing the return on investment for the end-user, relative to other PV technologies.

Team: Researchers from Universite de Laval, Queen's University, the University of Toronto and Simon Fraser University will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS), the NRC Institute for Chemical Process and Environmental Technology (NRC-ICPET) and the NRC Steacie Institute for Molecular Sciences (NRC-SIMS) in Ottawa.

3. Nanostructured Single and Entangled Photon Sources for Quantum Information Processing

Context: Quantum light theory has opened the route toward quantum cryptography and quantum computers using single photons. Quantum cryptography will guarantee secure communication, and quantum computers will be able to solve certain problems exponentially faster than any classical computer.

Objectives: Engineer optoelectronic nanostructures so that they can emit single photons or specialized photon pairs in which the photons are "tied together" so that influences to one photon can be immediately detected by its partner, even on the opposite side of the world. Develop a commercially viable technology for the production of single and entangled photon sources, stimulating the creation of new Canadian companies that will focus on systems for completely secure communications for data protection.

Team: Researchers from Queen's University, the University of Waterloo, the University of Victoria and the University of British Columbia will work with scientists and engineers from the NRC Institute for Microstructural Sciences (NRC-IMS) and the NRC Institute for National Measurement Standards (NRC-INMS), in Ottawa.

4. Instrumentation for real-time chemical and physical characterization of nano-aerosols

Context: Airborne nanoparticles (nano-aerosols) contribute to poor air quality and climate change and cause cardiovascular, respiratory, and allergic distress. Nano-aerosols are ultrafine particulates, with sizes measured in nanometres. Current instrumentation can measure fine particulates, greater than 2.5 microns, but no instrumentation exists to monitor, measure and characterize aerosol nanoparticles (1nm-1 micronsm). The properties that need to be measured to assess the impacts of nano-aerosols are the physical and chemical characteristics, such as size, concentration, and composition.

Objectives: Exploit the latest in laser technology to develop and demonstrate instrumentation capable of characterizing the formation, composition, and distribution of nano-aerosols. Characterize the full range of nano-particles emitted by the combustion of hydrocarbon fuels and demonstrate the usefulness of such a technology which, after commercialization, will become available to other researchers and industries.

Team: Researchers from the University of Waterloo, the University of Alberta, Concordia College (Alberta), and the University of British Columbia will work with scientists and engineers from the NRC Institute for Chemical Process and Environmental Technology (NRC-ICPET), the NRC Institute for Microstructural Sciences (NRC-IMS), and the NRC Steacie Institute for Molecular Sciences (NRC-SIMS) in Ottawa.

5. Polyester Nanocomposites for Greener Transportation, Construction and Packaging Applications

Context: Polymer nanocomposites (PNCs) are materials composed of a polymer matrix with nanometer-size particles dispersed in it. The nanoparticles increase the stiffness, strength, barrier properties and heat resistance of the materials without making them heavier or more transparent. These advantages make PNCs ideal for use in the transportation, construction and packaging industries.

Objectives: Develop advanced approaches to incorporate cost-effective nano-size reinforcements, like natural and synthetic clays, into synthetic and bio-based polyester resins (both thermoset and thermoplastic). As part of this work, the team intends to develop enhanced nanocomposite products that would improve industrial manufacturing efficiency, and transfer this technology to industry.

Team: Researchers from the Ecole Polytechnique, McGill University, Concordia, and the University of Toronto will be working with scientists and engineers from the NRC Industrial Materials Institute (NRC-IMI) in Boucherville, Quebec.

####

About National Research Council of Canada
NRC is the Government of Canada's premier organization for research and development. NRC works with industry and university partners to develop advanced materials and innovative processes, giving Canadian companies a competitive edge. Its expertise in nanotechnology - the research and development of materials and devices on the scale of a billionth of a metre - is contributing to new medical, environmental and clean energy technologies, as well as communications and information technologies.

About the Natural Sciences and Engineering Research Council of Canada

NSERC is a federal agency whose vision is to help make Canada a country of discoverers and innovators for the benefit of all Canadians. The agency supports some 25,000 university students and postdoctoral fellows in their advanced studies. NSERC promotes discovery by funding more than 11,000 university professors every year and fosters innovation by encouraging more than 1,400 Canadian companies to participate and invest in university research projects.

About BDC Venture Capital

BDC Venture Capital is a major venture capital investor in Canada, active at every stage of a company's development cycle, from seed through expansion. Its focus is on technology-based businesses with high growth potential that are positioned to become dominant players in their markets. Established in 1975, BDC Venture Capital has invested in over 400 firms to date. It currently manages some $500 million in venture capital investments in the life sciences, telecommunications, information technology, and advanced technology sectors, as well as investments in funds.

For more information, please click here

Contacts:
National Research Council Canada
Natalie Hall
Media Relations Officer
613-990-6091


or

Business Development Bank of Canada
Johanne Bissonnette
Manager, Media Relations
514-283-7929


or

Natural Sciences and Engineering Research Council
Martine Perreault
Media and Public Affairs Officer
613-996-7238


or

Office of the Honourable Jim Prentice
Minister of Industry
Deirdra McCracken
Press Secretary
613-995-9001

Copyright © Marketwire

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Self-assembling biomaterial forms nanostructure templates for human tissue formation April 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

International research team discovers new mechanism behind malaria progression: Findings provide a new avenue for research in malaria treatment April 27th, 2015

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

Two-dimensional semiconductor comes clean April 27th, 2015

Quantum Computing

NIST tightens the bounds on the quantum information 'speed limit' April 13th, 2015

Electrical control of quantum bits in silicon paves the way to large quantum computers: Breakthrough by Australian-led team should make the construction of large-scale quantum computers more affordable April 11th, 2015

OU physicists first to create new molecule with record-setting dipole moment April 4th, 2015

Quantum teleportation on a chip: A significant step towards ultra-high speed quantum computers April 1st, 2015

Materials/Metamaterials

More is less in novel electronic material: Adding electrons actually shrinks the system April 27th, 2015

The 16th Trends in Nanotechnology International Conference (TNT 2015) unveils 25 Keynote Speakers: Call for abstracts open April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Surface matters: Huge reduction of heat conduction observed in flat silicon channels April 23rd, 2015

Announcements

New technique for exploring structural dynamics of nanoworld: Developed in a Nobel laureate's laboratory at Caltech, hybrid approach allows ultrafast EM analysis of materials, showing tiny electronic changes in individual atoms within a material on ultrafast time scales April 28th, 2015

When mediated by superconductivity, light pushes matter million times more April 28th, 2015

Chemists strike nano-gold: 4 new atomic structures for gold nanoparticle clusters: Research builds upon work by Nobel Prize-winning team from Stanford University April 28th, 2015

Sensor Designed in Iran Able to Remove Formaldehyde Gas from Environment April 27th, 2015

Energy

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices: New approach to designing ordered composite materials for possible energy applications April 23rd, 2015

'Holey' graphene for energy storage: Charged holes in graphene increase energy storage capacity April 22nd, 2015

Expanding the reach of metallic glass April 22nd, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

Two-dimensional semiconductor comes clean April 27th, 2015

Scientists join forces to reveal the mass and shape of single molecules April 27th, 2015

Graphenea celebrates fifth anniversary April 27th, 2015

Feynman Prize Winners Announced! April 26th, 2015

Solar/Photovoltaic

Pseudoparticles travel through photoactive material: KIT scientists measure important process in the conversion of light energy -- publication in Nature Communications April 24th, 2015

Printing Silicon on Paper, with Lasers April 21st, 2015

Better battery imaging paves way for renewable energy future April 20th, 2015

The microscopic topography of ink on paper: Researchers have analyzed the varying thickness of printed toner in unprecedented 3-D detail, yielding insights that could lead to higher quality, less expensive and more environmentally-friendly glossy and non-glossy papers April 14th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project