Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > U of M signs agreement with nanotechnology company in flood-devastated Rushford

Abstract:
Just seven months ago the southeastern Minnesota town of Rushford was ravaged by flash floods. Today, an agreement between the University of Minnesota and local company Rushford Hypersonic is a hopeful sign that the town is well on its way to recovery. Under the agreement, nanoparticle film deposition technologies developed at the university will be used by Rushford Hypersonic on products in the industrial tooling and coating applications industries. The company eventually expects to create 40 to 60 jobs at its facility in Rushford.

U of M signs agreement with nanotechnology company in flood-devastated Rushford

MINNEAPOLIS / ST. PAUL, MN | Posted on April 23rd, 2008

The agreement will be marked at an open house from 11 a.m. to 2 p.m. Wednesday, April 23 at the Rushford Hypersonic facility, 1000 Technology Drive in Rushford. Representatives from the university, Rushford Hypersonic, the city of Rushford and the state of Minnesota will be on hand.

"The University of Minnesota produces some of the world's best nanotechnology, and we are very pleased to sign this agreement with them," said Daniel Fox, Rushford Hypersonic's chief executive officer. "The university worked closely with us throughout the entire process and helped structure the agreement so that we can bring these technologies to market very quickly."

"The university aims to be an effective partner with industry," said Jay Schrankler, executive director at the university's Office for Technology Commercialization (OTC). "This agreement with Rushford Hypersonic is a great example of how we can make it easy for companies to find what they're looking for at the university and establish long-term partnerships."

The nanoparticle film deposition technologies were developed over the past decade by professors Steven Girshick, Joachim Heberlein and Peter McMurry in the university's mechanical engineering department, William Gerberich in chemical engineering and materials science and Nagaraja Rao, formerly in mechanical engineering.

"The processes provide a variety of coating technologies that are harder, more wear resistant and less heat generative than standard coatings used in the industrial tooling industry today," said Eric Hockert, technology marketing manager at OTC. "Rushford Hypersonic will use these processes to coat and sell industrial tooling and develop coating applications for materials that can benefit from the improved hardness and friction reduction that these processes offer."

Rushford Hypersonic will manufacture parts locally in Rushford and employ the area's skilled work force. They will use Web-based technology to market and sell their products, and will partner with a global distributor. Expansion into other markets will take place as new applications are developed for industrial and automotive surfaces (e.g., camshafts, valves, bearings) and medical applications, such as the ball and socket in an artificial hip. The company also will join forces with the university by providing funding for a graduate research assistantship in the nanotechnology research program.

####

About University of Minnesota
The University of Minnesota is one of the most comprehensive public universities in the United States and ranks among the most prestigious. It is both the state land-grant university, with a strong tradition of education and public service, and the state's primary research university, with faculty of national and international reputation.

For more information, please click here

Contacts:
John Merritt
Office of the Vice President for Research
(612) 624-2609

Mark Cassutt
University News Service
(612) 624-8038

Copyright © University of Minnesota

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Materials/Metamaterials

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

Smallest possible diamonds form ultra-thin nanothreads: Diamond nanothreads are likely to have extraordinary properties, including strength and stiffness greater than that of today's strongest nanotubes and polymers September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Synthesis of Nanostructures with Controlled Shape, Size in Iran September 22nd, 2014

Announcements

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Patents/IP/Tech Transfer/Licensing

‘Small’ transformation yields big changes September 16th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

Alliances/Partnerships/Distributorships

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Toward making lithium-sulfur batteries a commercial reality for a bigger energy punch September 17th, 2014

NEI Corporation and PneumatiCoat Technologies Sign Agreement to Jointly Develop and Market New Materials for Lithium-ion Batteries September 12th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE