Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Brown Chemist Finds Platinum Nanocube Enhances Fuel Cell Operation

 The Making of a Platinum Nanocube On the left is a transmission electron microscopy image of 7 nanometer platinum nanocubes used for oxygen reduction reaction. In the upper right corner of this image is a high resolution picture of a single cube. On the right is an illustration demonstrating the oxygen reduction on a Pt(100) surface of a cube. Credit: Courtesy of Chao Wang/Brown University
The Making of a Platinum Nanocube On the left is a transmission electron microscopy image of 7 nanometer platinum nanocubes used for oxygen reduction reaction. In the upper right corner of this image is a high resolution picture of a single cube. On the right is an illustration demonstrating the oxygen reduction on a Pt(100) surface of a cube.

Credit: Courtesy of Chao Wang/Brown University

Abstract:
A team of chemists at Brown University for the first time has consistently created uniform platinum nanocubes, a breakthrough that could make hydrogen fuel cells more efficient and less costly.

Brown Chemist Finds Platinum Nanocube Enhances Fuel Cell Operation

Providence, RI | Posted on April 21st, 2008

Two great obstacles to hydrogen-powered vehicles lie with fuel cells. Fuel cells, which like batteries produce electrical power through chemical reactions, have been plagued by their relatively low efficiency and high production costs. Scientists have tested a wide assortment of metals and materials to overcome the twin challenge.

Now a team led by Brown University chemistry Professor Shouheng Sun has mastered a Rubik's Cube-like dilemma for dealing with platinum, a precious metal coveted for its ability to boost a chemical reaction in fuel cells. They show that shaping platinum into a cube greatly enhances its efficiency in a phase of the fuel cell's operation known as oxygen reduction reaction. Sun's results have been published online in the journal Angewandte Chemie. The paper was selected as a Very Important Paper, reserved for less than five percent of manuscripts submitted to the peer-reviewed journal.

Platinum helps reduce the energy barrier - the amount of energy needed to start a reaction - in the oxidation phase of a fuel cell. It is also seen as beneficial on the other end of the fuel cell, known as the cathode. There, platinum has been shown to assist in oxygen reduction, a process in which electrons peeled from hydrogen atoms join with oxygen atoms to create electrical energy. The reaction also is important because it only produces water. This byproduct - rather than the global warming gas carbon dioxide - is a big reason why hydrogen fuel cells are a tantalizing area of research from carmakers in Detroit to policymakers in Washington.

But scientists have had trouble maximizing platinum's potential in the oxygen reduction reaction. The barriers chiefly revolve around shape and surface area - geometry and geography, so to speak. What Sun has learned is that molding platinum into a cube on the nanoscale enhances its catalysis - that is, it boosts the rate of a chemical reaction.

"For the first time, we can control the morphology of the particle to make it more like a cube," Sun said. "People have had very limited control over this process before. Now we have shown it can be done uniformly and consistently."

During his experiments, Sun, along with Brown graduate engineering student Chao Wang and engineers from the Japanese firm Hitachi Maxwell Ltd., created polyhedron and cube shapes of different sizes by adding platinum acetylacetonate (Pt(acac)2) and a trace amount of iron pentacarbonyl (Fe(CO)5) at specific temperature ranges. The team found that cubes were more efficient catalysts, owing largely to their surface structure and their resistance to being absorbed by the sulfate in the fuel cell solution.

"For this reaction, the shape is more important than the size," Sun said.

The next step, Sun added, is to build a polymer electrolyte membrane fuel cell and test the platinum nanocubes as catalysts in it. The team expects the experiments will yield fuel cells with a higher electrical output than previous versions.

"It's like science fiction, but we're a step closer now to the reality of developing a very efficient platinum catalyst for hydrogen cars that produce only water as exhaust," Sun said.

Hitachi Maxell chemical engineers Hideo Daimon, Taigo Ondera and Tetsunori Koda, a visiting engineer at Brown, contributed to the research.

The research was funded by the National Science Foundation and by the Office of the Vice President of Research at Brown University through its Research Seed Fund.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Fuel Cells

Current and Future Developments in Nanomaterials and Carbon Nanotubes: Applications of Nanomaterials in Energy Storage and Electronics October 28th, 2022

The “dense” potential of nanostructured superconductors: Scientists use unconventional spark plasma sintering method to prepare highly dense superconducting bulk magnesium diboride with a high current density October 7th, 2022

New iron catalyst could – finally! – make hydrogen fuel cells affordable: Study shows the low-cost catalyst can be a viable alternative to platinum that has stymied commercialization of the eco-friendly fuel for decades because it’s so expensive July 8th, 2022

Development of high-durability single-atomic catalyst using industrial humidifier: Identification of the operating mechanism of cobalt-based single-atomic catalyst and development of a mass production process. Utilization for catalyst development in various fields including fuel May 13th, 2022

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project