Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Brown Chemist Finds Platinum Nanocube Enhances Fuel Cell Operation

 The Making of a Platinum Nanocube On the left is a transmission electron microscopy image of 7 nanometer platinum nanocubes used for oxygen reduction reaction. In the upper right corner of this image is a high resolution picture of a single cube. On the right is an illustration demonstrating the oxygen reduction on a Pt(100) surface of a cube. Credit: Courtesy of Chao Wang/Brown University
The Making of a Platinum Nanocube On the left is a transmission electron microscopy image of 7 nanometer platinum nanocubes used for oxygen reduction reaction. In the upper right corner of this image is a high resolution picture of a single cube. On the right is an illustration demonstrating the oxygen reduction on a Pt(100) surface of a cube.

Credit: Courtesy of Chao Wang/Brown University

Abstract:
A team of chemists at Brown University for the first time has consistently created uniform platinum nanocubes, a breakthrough that could make hydrogen fuel cells more efficient and less costly.

Brown Chemist Finds Platinum Nanocube Enhances Fuel Cell Operation

Providence, RI | Posted on April 21st, 2008

Two great obstacles to hydrogen-powered vehicles lie with fuel cells. Fuel cells, which like batteries produce electrical power through chemical reactions, have been plagued by their relatively low efficiency and high production costs. Scientists have tested a wide assortment of metals and materials to overcome the twin challenge.

Now a team led by Brown University chemistry Professor Shouheng Sun has mastered a Rubik's Cube-like dilemma for dealing with platinum, a precious metal coveted for its ability to boost a chemical reaction in fuel cells. They show that shaping platinum into a cube greatly enhances its efficiency in a phase of the fuel cell's operation known as oxygen reduction reaction. Sun's results have been published online in the journal Angewandte Chemie. The paper was selected as a Very Important Paper, reserved for less than five percent of manuscripts submitted to the peer-reviewed journal.

Platinum helps reduce the energy barrier - the amount of energy needed to start a reaction - in the oxidation phase of a fuel cell. It is also seen as beneficial on the other end of the fuel cell, known as the cathode. There, platinum has been shown to assist in oxygen reduction, a process in which electrons peeled from hydrogen atoms join with oxygen atoms to create electrical energy. The reaction also is important because it only produces water. This byproduct - rather than the global warming gas carbon dioxide - is a big reason why hydrogen fuel cells are a tantalizing area of research from carmakers in Detroit to policymakers in Washington.

But scientists have had trouble maximizing platinum's potential in the oxygen reduction reaction. The barriers chiefly revolve around shape and surface area - geometry and geography, so to speak. What Sun has learned is that molding platinum into a cube on the nanoscale enhances its catalysis - that is, it boosts the rate of a chemical reaction.

"For the first time, we can control the morphology of the particle to make it more like a cube," Sun said. "People have had very limited control over this process before. Now we have shown it can be done uniformly and consistently."

During his experiments, Sun, along with Brown graduate engineering student Chao Wang and engineers from the Japanese firm Hitachi Maxwell Ltd., created polyhedron and cube shapes of different sizes by adding platinum acetylacetonate (Pt(acac)2) and a trace amount of iron pentacarbonyl (Fe(CO)5) at specific temperature ranges. The team found that cubes were more efficient catalysts, owing largely to their surface structure and their resistance to being absorbed by the sulfate in the fuel cell solution.

"For this reaction, the shape is more important than the size," Sun said.

The next step, Sun added, is to build a polymer electrolyte membrane fuel cell and test the platinum nanocubes as catalysts in it. The team expects the experiments will yield fuel cells with a higher electrical output than previous versions.

"It's like science fiction, but we're a step closer now to the reality of developing a very efficient platinum catalyst for hydrogen cars that produce only water as exhaust," Sun said.

Hitachi Maxell chemical engineers Hideo Daimon, Taigo Ondera and Tetsunori Koda, a visiting engineer at Brown, contributed to the research.

The research was funded by the National Science Foundation and by the Office of the Vice President of Research at Brown University through its Research Seed Fund.

####

For more information, please click here

Contacts:
Richard Lewis
(401) 863-3766

Copyright © Brown University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Announcements

Ultracold atom waves may shed light on rogue ocean killers: Rice quantum experiments probe underlying physics of rogue ocean waves April 27th, 2017

Looking for the quantum frontier: Beyond classical computing without fault-tolerance? April 27th, 2017

Metal nanoparticles induced visible-light photocatalysis: Mechanisms, applications, ways of promoting catalytic activity and outlook April 27th, 2017

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Second Quarter Results April 27th, 2017

Energy

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

SUNY Polytechnic Institute Announces Total of 172 Teams Selected to Compete in Solar in Your Community Challenge: Teams from 40 states, plus Washington, DC, 2 Territories, and 4 American Indian Reservations, Will Deploy Solar in Underserved Communities April 20th, 2017

Better living through pressure: Functional nanomaterials made easy April 19th, 2017

Shedding light on the absorption of light by titanium dioxide April 14th, 2017

Fuel Cells

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project