Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Newfound ability of organic molecules to conduct electricity opens door to smaller, cheaper, and more powerful technologies

Abstract:
Pitt Researchers Make Breakthrough in Nanotechnology by Uncovering Conductive Property of Carbon-based Molecules

Newfound ability of organic molecules to conduct electricity opens door to smaller, cheaper, and more powerful technologies

PITTSBURGH, PA | Posted on April 17th, 2008

University of Pittsburgh researchers have discovered that certain organic-or carbon-based-molecules exhibit the properties of atoms under certain circumstances and, in turn, conduct electricity as well as metal. Detailed in the April 18 edition of "Science," the finding is a breakthrough in developing nanotechnology that provides a new strategy for designing electronic materials, including inexpensive and multifunctional organic conductors that have long been considered the key to smaller, cheaper, and faster technologies.

The Pitt team found that the hollow, soccer-ball-shaped carbon molecules known as fullerenes can hold and transfer an electrical charge much like the most highly conductive atoms, explained project head Hrvoje Petek, a professor of physics and chemistry in Pitt's School of Arts and Sciences and codirector of Pitt's Petersen Institute for NanoScience and Engineering. The research was performed by Pitt post-doctoral associates Min Feng and Jin Zhao.

When an electron was introduced into a fullerene molecule, the shape of the electron distribution mimicked that of a hydrogen atom or an atom from the alkali metal group, which includes lithium, sodium, and potassium. Moreover, when two fullerenes were placed next to each other on a copper surface, they showed the electron distribution of their chemical bond and appeared as H2, a hydrogen molecule. The assembly exhibited metal-like conductivity when the team extended it to a wire 1-molecule-wide.

"Our work provides a new perspective on what determines the electronic properties of materials," Petek said. "The realization that hollow molecules can have metal-like conductivity opens the way to develop novel materials with electronic and chemical properties that can be tailored by shape and size."

Although the team worked with fullerenes, the team's results apply to all hollow molecules, Petek added, including carbon nanotubes-rolled, 1-atom-thick sheets of graphite 100,000 times smaller than a human hair.

The team's research shows promise for the future of electronics based on molecular conductors. These molecule-based devices surpass the semiconductor and metal conductors of today in terms of lower cost, flexibility, and the ability to meld the speed and power of optics and electronics. Plus, unlike such inorganic conductors as silicon, molecule-based electronics can be miniaturized to a 1-dimensional scale (1-molecule-wide), which may enable them to conduct electricity with minimal loss and thus improve the performance of an electronic device.

Traditionally, the problem has been that organic conductors have not conducted electrical current very well, Petek said. The Pitt team's discovery could enable scientists to finally overcome that problem, he added.

"Metal-like behavior in a molecular material-as we have found-is highly surprising and desirable in the emerging field of molecular electronics," he said.

"Our work is a unique example of how nanoscale materials can be used as atom-sized building blocks for molecular materials that could replace silicon and copper in electronic devices, luminescent displays, photovoltaic cells, and other technologies."

To view the paper, visit the "Science" Web site at www.sciencemag.org.

####

About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the 220 years since, the University has evolved into an internationally recognized center of learning and research.

For more information, please click here

Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)


Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Chip Technology

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Nanoelectronics

Oddball enzyme provides easy path to synthetic biomaterials May 17th, 2017

Racyics Launches ‘makeChip’ Design Service Platform for GLOBALFOUNDRIES’ 22FDX® Technology: Racyics will provide IP and design services as a part of the foundry’s FDXcelerator™ Partner Program May 11th, 2017

Researchers “iron out” graphene’s wrinkles: New technique produces highly conductive graphene wafers April 3rd, 2017

A big leap toward tinier lines: Self-assembly technique could lead to long-awaited, simple method for making smaller microchip patterns March 27th, 2017

Discoveries

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Sensors detect disease markers in breath May 19th, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

Plasmon-powered upconversion nanocrystals for enhanced bioimaging and polarized emission: Plasmonic gold nanorods brighten lanthanide-doped upconversion superdots for improved multiphoton bioimaging contrast and enable polarization-selective nonlinear emissions for novel nanoscal May 19th, 2017

Announcements

GLOBALFOUNDRIES and Chengdu Partner to Expand FD-SOI Ecosystem in China: More than $100M investment to establish a center of excellence for FDXTM FD-SOI design May 23rd, 2017

Zap! Graphene is bad news for bacteria: Rice, Ben-Gurion universities show laser-induced graphene kills bacteria, resists biofouling May 22nd, 2017

Leti Will Demo World’s-first WVGA 10-µm Pitch GaN Microdisplays for Augmented Reality Video at Display Week in Los Angles: Invited Paper also Will Present Leti’s Success with New Augmented Reality Technology That Reduces Pixel Pitch to Less than 5 Microns May 22nd, 2017

Graphene-nanotube hybrid boosts lithium metal batteries: Rice University prototypes store 3 times the energy of lithium-ion batteries May 19th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project