Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > GMZ Energy Paves the Way for New Generation of Greener Household Appliances, Power Plants and Cars

Abstract:
Material Breakthrough Delivers Affordable and Adaptable Nanotechnology for Cleaner, More Energy-Efficient Products

GMZ Energy Paves the Way for New Generation of Greener Household Appliances, Power Plants and Cars

Boston, MA | Posted on April 17th, 2008

GMZ Energy today announced the availability of a breakthrough material designed for a new generation of cleaner, more energy-efficient products. The new thermoelectric material, nanotechnology-based and environmentally friendly, effectively turns waste heat into electrical power and paves the way for greener consumer and industrial products that can contribute to a more sustainable future.

The GMZ material has a range of capabilities and applications, which includes the ability to optimize cooling in refrigerators and air conditioners and to generate power from heat sources such as automotive exhaust systems. Commercially viable because it is available, cost-effective and easily adoptable, GMZ material can be used in products today to start reducing energy use and therefore greenhouse gas emissions.

"The use of thermoelectric materials in clean technology has long been overlooked due to high costs and low efficiency, and we've overcome those challenges," says Mike Clary, CEO of GMZ Energy. "We're very excited about the efficiency gains our technology allows, and GMZ Energy is well-positioned to deliver a commercially available material today and help facilitate its use in everyday products."

In the near-term, the GMZ material will be used in cooling applications and to create products that consume less energy or capture energy that would otherwise be wasted. Longer term, it can provide more advanced solutions, such as cars partially powered by the exhaust system and solar thermal panels with heightened performance.

The GMZ material, currently in advanced testing stage at select U.S. and Asia-Pacific manufacturers and being sampled by early customers, integrates easily into existing and new product designs for a rapid time-to-market. GMZ Energy is producing the material in pre-production volume at its multi-ton manufacturing facility. Previously, producing such a material was complex work with multiple steps of nanotechnology engineering. GMZ Energy pioneered a simple manufacturing process that makes the thermoelectric material cost-effectively and at high enough volume to be commercially viable.

The GMZ thermoelectric material consists of an environmentally friendly alloy. The alloy, bismuth antimony telluride, is crushed into nanoparticles about one-1,000th the width of a human hair which are then heated and pressed back together in GMZ's innovative manufacturing process. The process disburses the nanoparticles throughout the bulk material, which has the benefit of scattering incoming heat. As a result, the material has the unique power to slow down heat flow while allowing electrical flow, thereby redirecting heat to drive electrons and energy rather than escape. The GMZ material delivers that ability to manage, direct and optimize energy on a new scale to the products that use it.

"The new material is a cost-effective way of improving energy efficiency and will have a significant affect on many product designs," says Zhifeng Ren, professor of Physics at Boston College and co-founder of GMZ Energy. "In addition to current applications, which are mostly in cooling, the new material will allow us to expand to new applications, such as solar thermoelectric methods in solar fields to generate power."

The technology to create the thermoelectric material was developed by researchers at MIT and Boston College, two leading U.S. research universities. GMZ Energy was formed by Gang Chen of MIT, Zhifeng Ren of Boston College and CEO Mike Clary to make the innovation market-ready and commercially available for a broad range of business and consumer applications.

####

About GMZ Energy
GMZ Energy is a pioneer in nanotechnology-based materials, a building block for a new generation of cleaner and more energy-efficient products. The company was founded in 2007 to make a new thermoelectric material widely available for use in consumer and industrial products, contributing to a more sustainable future. Based on a scientific breakthrough at MIT and Boston College, GMZ Energy materials are manufactured in Newton, Massachusetts, where the company is headquartered. GMZ Energy is funded by Kleiner Perkins Caufield & Byers.

Contacts:
Burson-Marsteller for GMZ Energy
Maria Cubeta
+1-415-591-4070 (press only)

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Announcements

Little ANTs: Researchers build the world's tiniest engine May 3rd, 2016

An Experiment Seeks to Make Quantum Physics Visible to the Naked Eye May 3rd, 2016

Quantum sensors for high-precision magnetometry of superconductors May 3rd, 2016

New drug-delivery approach holds potential for treating obesity May 2nd, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

Home

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Transparent wood could one day help brighten homes and buildings March 31st, 2016

ORNL researchers invent tougher plastic with 50 percent renewable content March 24th, 2016

New research unveils graphene 'moth eyes' to power future smart technologies: New ultra-thin, patterned graphene sheets will be essential in designing future technologies such as 'smart wallpaper' and Internet-of-things applications March 1st, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic