Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Fast AFM Probes Measure Many Biomolecule or Material Properties

An AFM holder adapted so that the FIRAT probe can be used on existing AFM systems. The FIRAT probe can simultaneously measure topography and material properties including adhesion, stiffness, elasticity and viscosity. (Georgia Tech Photo: Gary Meek)
An AFM holder adapted so that the FIRAT probe can be used on existing AFM systems. The FIRAT probe can simultaneously measure topography and material properties including adhesion, stiffness, elasticity and viscosity. (Georgia Tech Photo: Gary Meek)

Abstract:
Probes simultaneously measure topography, adhesion, stiffness, elasticity and viscosity

Fast AFM Probes Measure Many Biomolecule or Material Properties

Atlanta, GA | Posted on April 17th, 2008

New research demonstrates that novel probe technology based on flexible membranes can replace conventional atomic force microscopy (AFM) cantilevers for applications such as fast topographic imaging, quantitative material characterization and single molecule mechanics measurements.

In addition to the standard AFM topography scan, these novel probes simultaneously measure material properties including adhesion, stiffness, elasticity and viscosity.

"Our probes attach directly to AFM systems currently on the market and can collect topography measurements at least 50 times faster than traditional cantilevers because they use electrostatic forces between the membrane and an electrode to move the tip," said Levent Degertekin, a professor in the George W. Woodruff School of Mechanical Engineering at Georgia Tech. The research team also includes Guclu Onaran and Hamdi Torun, graduate students in the Georgia Tech School of Electrical and Computer Engineering.

Details of the novel force sensing integrated readout and active tip (FIRAT) probe and its biological applications were presented at the American Physical Society meeting in March. This research was funded by the National Institutes of Health and the National Science Foundation.

In current AFM systems, the sample surface is scanned by a cantilever with a sharp tip just a few nanometers in diameter at the end. An optical beam is bounced off the cantilever tip to measure the deflection of the cantilever as the sharp tip moves over the surface and interacts with the material being analyzed to determine the topography of the surface.

The new probe replaces the cantilever with a drum-like membrane from which a tip extends to scan the material sample. In one scanning mode, as the tip moves above a surface, it lightly taps the material. With each tap, the instrument gathers precise information about both the tip's position and the forces acting on it, sensing the shape of the material and how stiff and sticky it is.

An output signal is generated only when there is an interaction force on the probe. In other words, transient interaction forces can be measured during each ‘tap' of the tip with high resolution and without any background signal.

In the February 27, 2008 issue of the journal Nanotechnology, the researchers described using the FIRAT probe to characterize the elasticity, surface energy and adhesion hysteresis of three polymers and a silicon sample. The quantitative results were mapped in addition to topography.

FIRAT probes made of dielectric materials with embedded actuation electrodes have also been designed for operation in liquids. The design of these membrane-based probes also makes them relatively easy to arrange in arrays in which each probe can move independently. One application of such an array is fast parallel measurements of forces between biological molecules.

In collaboration with Cheng Zhu, Regents' Professor in the Wallace H. Coulter Department of Biomedical Engineering, Degertekin is using the probe to measure the force between two interacting biological molecules and unbinding forces between two molecules.

By testing different molecules and buffer solutions, researchers can determine the probability of molecule adhesion, a process that requires many repetitive measurements. This has implications in drug discovery, where determining how frequently certain soft biological molecules adhere to each other is important.

"Rather than moving a single cantilever up and down a thousand times, we have developed a membrane that would allow parallel measurements of molecules to get thousands of measurements at one time," said Degertekin.

This new technique was described in the February 2007 issue of the journal Nanotechnology. For different applications, Degertekin can adjust the stiffness of the membranes.

"The best mechanical measurements of surfaces or biomolecules are obtained when the probe stiffness matches the sample stiffness," explained Degertekin. "If you use a piezoelectric or any other linear actuator, you don't have that phenomenon - you cannot soften things."

By electrically changing the spring constant of the FIRAT probe, Degertekin can adjust the stiffness of the membranes, providing the ability to use the same probe to identify the mechanical properties of different samples - some soft and some stiff. This research was published in the December 2007 issue of the journal Applied Physics Letters.

"We know these probes improve the speed of AFM scans and provide increased information about a sample," said Degertekin. "The next step is to batch fabricate them so that all researchers using AFM systems can benefit from these probes."

####

About Georgia Institute of Technology
The Georgia Institute of Technology is one of the nation's premiere research universities. Ranked seventh among U.S. News & World Report's top public universities, Georgia Tech's more than 18,000 students are enrolled in its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech is among the nation's top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute.

For more information, please click here

Contacts:
Research News & Publications Office
Georgia Institute of Technology
75 Fifth Street, N.W., Suite 100
Atlanta, Georgia 30308 USA
Abby Vogel
404-385-3364

or
John Toon
404-894-6986

Copyright © Georgia Institute of Technology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Imaging

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

Bruker Awarded Fourth PeakForce Tapping Patent: AFM Mode Uniquely Combines Highest Resolution Imaging and Material Property Mapping July 22nd, 2014

SentiMag® Now Available in Australia and New Zealand July 21st, 2014

"Nanocamera" takes pictures at distances smaller than light's own wavelength: How is it possible to record optically encoded information for distances smaller than the wavelength of light? July 17th, 2014

Announcements

Silicene Labs Announces the Launch of Patent-Pending, 2D Materials Composite Index™ : The Initial 2D Materials Composite Index™ for Q2 2014 Is: 857.3; Founders Include World-Renowned Physicist and Seasoned Business and IP Professionals July 24th, 2014

Iranian Scientists Produce Transparent Nanocomposite Coatings with Longer Lifetime July 24th, 2014

Deadline Announced for Registration in 7th Int'l Nanotechnology Festival in Iran July 23rd, 2014

A Crystal Wedding in the Nanocosmos July 23rd, 2014

Tools

Hysitron is Awarded TWO R&D 100 Awards for Highly Innovative Technology Developments in the Areas of Extreme Environments and Biological Mechanical Property Testing July 23rd, 2014

EPFL Research on the use of AFM based nanoscale IR spectroscopy for the study of single amyloid molecules wins poster competition at Swiss Physics Society meeting July 22nd, 2014

The Hiden EQP Plasma Diagnostic with on-board MCA July 22nd, 2014

Nanometrics Announces Upcoming Investor Events July 22nd, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE