Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Argonne scientists develop techniques for creating molecular movies

Abstract:
They may never win an Oscar, but scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed techniques for creating accurate movies of biological and chemical molecules, a feat only theorized up until now.

Argonne scientists develop techniques for creating molecular movies

ARGONNE, IL | Posted on April 16th, 2008

Biological and organic molecules in solution are far more complex than the standard crystalline structures of salt or metals since they are constantly moving and changing over time. These motions have not yet been seen directly, but scientists using the high-intensity X-rays at the Advanced Photon Source have measured images that are "blurred" by these motions and have used them to create more accurate movies of molecular motions.

Computer simulations are currently the only way to visualize molecular motions in solution, but researchers have not had a means to check the accuracy of these simulations for complex molecules. For the first time, scientists can see the movements first hand and compare them to their theoretical counterparts.

" The blurring that we see in our solution X-ray patterns are remarkably sensitive to the type of the molecular motion," senior chemist David Tiede said. "For the first time, we are able to test the accuracy of the simulation and change it to fit data better. Without it, we had no way of knowing how accurate the models were."

Tiede hopes an improved accuracy in molecular modeling will give insights into the structure and behavior of the molecules. Collaborators at the National Institutes of Health have used this approach to help determine structures of important biological molecules.

Tiede and his collaborators also plan to examine how a structure reacts to an outside stimulus. By using a laser to excite the atoms, he will create a movie that shows how the molecule reacts to the initial laser pulse and also how it returns to a stable condition.

"We hope to establish between'good' and'bad' molecular actors in important chemical processes like photosynthesis, solar energy and catalysts," Tiede said. "Once we see that, we can make these processes work better."

####

About Argonne National Laboratory
Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

Funding for this research was provided by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences. The mission of the Basic Energy Sciences program—a multipurpose, scientific research effort—is to foster and support fundamental research to expand the scientific foundations for new and improved energy technologies and for understanding and mitigating the environmental impacts of energy use. The portfolio supports work in the natural sciences, emphasizing fundamental research in materials sciences, chemistry, geosciences and aspects of biosciences.

For more information, please click here

Contacts:
Brock Cooper
630/252-5565

Copyright © Argonne National Laboratory

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Animated gif on DNA

Animated gif on Porphyrin

Related News Press

News and information

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Searching for a nanotech self-organizing principle May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Laboratories

Exploring phosphorene, a promising new material April 29th, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

NREL theory establishes a path to high-performance 2-D semiconductor devices April 27th, 2016

Brookhaven's Oleg Gang Named a Battelle 'Inventor of the Year': Recognized for work using DNA to guide and regulate the self-assembly of nanoparticles into clusters and arrays with controllable properties April 25th, 2016

Videos/Movies

WiFi capacity doubled at less than half the size: Columbia Engineers develop the first on-chip RF circulator that doubles WiFi speeds with a single antenna -- could transform telecommunications April 18th, 2016

First-ever videos show how heat moves through materials at the nanoscale and speed of sound: Groundbreaking observations could help develop better, more efficient materials for electronics and alternative energy April 16th, 2016

Nanotubes assemble! Rice introduces 'Teslaphoresis' Reconfigured Tesla coil aligns, electrifies materials from a distance April 15th, 2016

Record-breaking steel could be used for body armor, shields for satellites April 7th, 2016

Announcements

Nanoparticles present sustainable way to grow food crops May 1st, 2016

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Cooling graphene-based film close to pilot-scale production April 30th, 2016

Personal cooling units on the horizon April 29th, 2016

Tools

Exploring phosphorene, a promising new material April 29th, 2016

JPK reports on the use of a NanoWizard AFM system at the University of Kaiserslautern to study the interaction of bacteria with microstructured surfaces April 28th, 2016

Chemists use DNA to build the world's tiniest thermometer April 27th, 2016

Bruker Introduces Dimension FastScan Pro Industrial AFM: Providing Nanometer-Resolution at High Scan Rates for up to 300-mm Samples April 26th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic