Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens.  (c) NANOIDENT Technologies AG
The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens. (c) NANOIDENT Technologies AG

Abstract:
Printed Sensors a Key Component of Novel Detection System

NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

LINZ, Austria | Posted on April 16th, 2008

NANOIDENT Technologies AG, a leader in the development and manufacture of printed semiconductor-based optoelectronic sensors, today announced the closing of a multi-party agreement with German company microfluidic ChipShop to develop a unique airborne pathogen detection system for the European Defence Agency.

The goal of the project is to develop an autonomous lab-on-a-chip based system, called the PathoID-Chip, for the detection of airborne chemical and biological agents. The system will be able to simultaneously test for multiple pathogens, in a shorter time and with greater sensitivity than is possible with conventional test methods. Tests will be completed in minutes and will be repeated every ten minutes; statistically, this is less time than it should take for a person to become infected. As a result, the presence of harmful substances can be detected in minutes and action can then be taken to reduce exposure.

To achieve these goals, the project combines several novel technologies to collect a sample from the air, inject it into liquid, process it and perform analysis. Other partners in the project include Clemens GmbH, Bundeswehr Institute of Microbiology, Friedrich-Loeffler-Institute, Joanneum Research Forschungsgesellschaft mbH, and Bertin Technologies. NANOIDENT's technology is a core element of the system, and represents a major advance in point-of-use testing. Because optoelectronic sensors are printed onto each chip, the system does not require laboratory handling or bulky, power-hungry, expensive optical readout equipment, making it much more portable, rugged, and tolerant of dust than conventional test systems. The proximity of the sensor to the sample also results in much higher sensitivity than conventional systems.

"Our unique printed sensor technology makes it possible to develop a truly mobile detection system, offering faster detection and minimizing exposure to harmful chemical and biological agents," said Dr. Max Sonnleitner, VP of NANOIDENT's Life Sciences division. "We are proud to contribute a key enabling technology to this innovative project and to be a part of such an outstanding team."

####

About NANOIDENT Technologies AG
NANOIDENT—named by Red Herring as one of the world’s 100 leading technology companies—is the market leader in the development and manufacture of printed semiconductor-based optoelectronic sensors. The company’s core technology merges the latest breakthroughs in materials science and nanotechnology with modern printing techniques to create a new class of semiconductor devices. The revolutionary SEMICONDUCTOR 2.0™ Platform is the basis of the world’s first commercial printed photonic sensors, enabling a whole new generation of applications in the industrial, biometric, and life science markets.

NANOIDENT’s high speed, environmentally friendly manufacturing process utilizes liquid nanomaterials and additive production techniques. These liquids are used to print electronic circuits on a wide variety of surfaces, producing products in mere hours for prototype as well as high volume applications. The company’s printed semiconductor devices can be bendable, disposable, light, ultrathin, and large area. They have application specific spectral and electronic properties, and can contain light sources and light detectors as well as electronic circuits. These unique characteristics enable cost-effective, custom designed devices for applications such as industrial, chemical, biological, and biometric sensors.

Privately held, the company is headquartered in Linz, Austria, with subsidiaries in San Francisco, California; Nuremberg, Germany; and Grenoble, France.

For more information, please click here

Contacts:
NANOIDENT Technologies AG
Ulrike Kaiser, +43 732 9024 0
Fax: +43 732 9044 5

www.nanoident.com
or
Schwartz Communications, Inc.
Kristin Amico, + 1-415-512-0770

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Sensors

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Researchers create practical and versatile microscopic optomechanical device: Trapping light and mechanical waves within a tiny bullseye, design could enable more sensitive motion detection January 11th, 2017

STMicroelectronics Peps Up Booming Social-Fitness Scene with Smart Motion Sensors for Better Accuracy, Longer Battery Life, and Faster Time to Market January 2nd, 2017

Advance in intense pulsed light sintering opens door to improved electronics manufacturing December 23rd, 2016

Announcements

Nanoparticle exposure can awaken dormant viruses in the lungs January 17th, 2017

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Homeland Security

Nanosensors on the alert for terrorist threats: Scientists interested in the prospects of gas sensors based on binary metal oxide nanocomposites November 5th, 2016

Nanobionic spinach plants can detect explosives: After sensing dangerous chemicals, the carbon-nanotube-enhanced plants send an alert November 2nd, 2016

Notre Dame researchers find transition point in semiconductor nanomaterials September 6th, 2016

Down to the wire: ONR researchers and new bacteria August 18th, 2016

Military

Nanoscale view of energy storage January 16th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Recreating conditions inside stars with compact lasers: Scientists offer a new path to creating the extreme conditions found in stars, using ultra-short laser pulses irradiating nanowires January 12th, 2017

Deciphering the beetle exoskeleton with nanomechanics: Understanding exoskeletons could lead to new, improved artificial materials January 12th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES Expands Partner Program to Speed Time-to-Market of FDX™ Solutions: Increased support affirms FDXcelerator™ Program’s vital role in promoting broader deployment of GLOBALFOUNDRIES’ FDX™ portfolio December 15th, 2016

Infrared instrumentation leader secures exclusive use of Vantablack coating December 5th, 2016

Leti and Grenoble Partners Demonstrate World’s 1st Qubit Device Fabricated in CMOS Process: Paper by Leti, Inac and University of Grenoble Alpes Published in Nature Communications November 28th, 2016

Mechanism for sodium storage in 2-D material: Tin selenide is an effective host for storing sodium ions, making it a promising material for sodium ion batteries October 27th, 2016

Printing/Lithography/Inkjet/Inks/Bio-printing

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanowire 'inks' enable paper-based printable electronics: Highly conductive films make functional circuits without adding high heat January 4th, 2017

Nanocubes simplify printing and imaging in color and infrared: New technology allows multispectral reactions on a single chip December 15th, 2016

Bumpy surfaces, graphene beat the heat in devices: Rice University theory shows way to enhance heat sinks in future microelectronics November 29th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project