Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens.  (c) NANOIDENT Technologies AG
The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens. (c) NANOIDENT Technologies AG

Abstract:
Printed Sensors a Key Component of Novel Detection System

NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

LINZ, Austria | Posted on April 16th, 2008

NANOIDENT Technologies AG, a leader in the development and manufacture of printed semiconductor-based optoelectronic sensors, today announced the closing of a multi-party agreement with German company microfluidic ChipShop to develop a unique airborne pathogen detection system for the European Defence Agency.

The goal of the project is to develop an autonomous lab-on-a-chip based system, called the PathoID-Chip, for the detection of airborne chemical and biological agents. The system will be able to simultaneously test for multiple pathogens, in a shorter time and with greater sensitivity than is possible with conventional test methods. Tests will be completed in minutes and will be repeated every ten minutes; statistically, this is less time than it should take for a person to become infected. As a result, the presence of harmful substances can be detected in minutes and action can then be taken to reduce exposure.

To achieve these goals, the project combines several novel technologies to collect a sample from the air, inject it into liquid, process it and perform analysis. Other partners in the project include Clemens GmbH, Bundeswehr Institute of Microbiology, Friedrich-Loeffler-Institute, Joanneum Research Forschungsgesellschaft mbH, and Bertin Technologies. NANOIDENT's technology is a core element of the system, and represents a major advance in point-of-use testing. Because optoelectronic sensors are printed onto each chip, the system does not require laboratory handling or bulky, power-hungry, expensive optical readout equipment, making it much more portable, rugged, and tolerant of dust than conventional test systems. The proximity of the sensor to the sample also results in much higher sensitivity than conventional systems.

"Our unique printed sensor technology makes it possible to develop a truly mobile detection system, offering faster detection and minimizing exposure to harmful chemical and biological agents," said Dr. Max Sonnleitner, VP of NANOIDENT's Life Sciences division. "We are proud to contribute a key enabling technology to this innovative project and to be a part of such an outstanding team."

####

About NANOIDENT Technologies AG
NANOIDENT—named by Red Herring as one of the world’s 100 leading technology companies—is the market leader in the development and manufacture of printed semiconductor-based optoelectronic sensors. The company’s core technology merges the latest breakthroughs in materials science and nanotechnology with modern printing techniques to create a new class of semiconductor devices. The revolutionary SEMICONDUCTOR 2.0™ Platform is the basis of the world’s first commercial printed photonic sensors, enabling a whole new generation of applications in the industrial, biometric, and life science markets.

NANOIDENT’s high speed, environmentally friendly manufacturing process utilizes liquid nanomaterials and additive production techniques. These liquids are used to print electronic circuits on a wide variety of surfaces, producing products in mere hours for prototype as well as high volume applications. The company’s printed semiconductor devices can be bendable, disposable, light, ultrathin, and large area. They have application specific spectral and electronic properties, and can contain light sources and light detectors as well as electronic circuits. These unique characteristics enable cost-effective, custom designed devices for applications such as industrial, chemical, biological, and biometric sensors.

Privately held, the company is headquartered in Linz, Austria, with subsidiaries in San Francisco, California; Nuremberg, Germany; and Grenoble, France.

For more information, please click here

Contacts:
NANOIDENT Technologies AG
Ulrike Kaiser, +43 732 9024 0
Fax: +43 732 9044 5

www.nanoident.com
or
Schwartz Communications, Inc.
Kristin Amico, + 1-415-512-0770

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Sensors

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

New sensor technology enables super-sensitive live monitoring of human biomolecules July 3rd, 2018

A refined magnetic sense: Algorithms and hardware developed in the context of quantum computation are shown to be useful for quantum-enhanced sensing of magnetic fields July 2nd, 2018

NIST Researchers Simulate Simple Logic for Nanofluidic Computing June 30th, 2018

Announcements

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern July 21st, 2018

World's fastest man-made spinning object could help study quantum mechanics July 20th, 2018

Relax, just break it July 20th, 2018

Future electronic components to be printed like newspapers July 20th, 2018

Homeland Security

Northwestern researchers achieve unprecedented control of polymer grids: Materials could find applications in water purification, solar energy storage, body armor June 22nd, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Squeezing light at the nanoscale: Ultra-confined light could detect harmful molecules June 17th, 2018

The dispute about the origins of terahertz photoresponse in graphene results in a draw April 26th, 2018

Military

In borophene, boundaries are no barrier: Rice U., Northwestern researchers make and test atom-thick boron's unique domains July 17th, 2018

UMBC researchers develop nanoparticles to reduce internal bleeding caused by blast trauma July 13th, 2018

Carbon is the new black: Researchers use carbon nanotubes to develop clothing that can double as batteries July 10th, 2018

High-power electronics keep their cool with new heat-conducting crystals July 6th, 2018

Alliances/Trade associations/Partnerships/Distributorships

Leti and Oscaro Partner on Leti’s New Low-Power, Low-Cost Transceiver to Track Parcels July 12th, 2018

Leti and Soitec Launch a New Substrate Innovation Center to Develop Engineered Substrate Solutions: Industry-inclusive hub promotes early collaboration and learning from substrate to system level July 11th, 2018

Leti & Partners Launch Pilot Program to Assess New Perception Sensors for Autonomous Vehicles July 5th, 2018

Powering the 21st Century with Integrated Photonics: UCSB-Led Team Selected for Demonstration of a Novel Waveguide Platform Which is Transparent Throughout the MWIR and LWIR Spectral Bands June 19th, 2018

Printing/Lithography/Inkjet/Inks/Bio-printing

Future electronic components to be printed like newspapers July 20th, 2018

Making carbon nanotubes as usable as common plastics: Researchers discover that cresols disperse carbon nanotubes at unprecedentedly high concentrations May 15th, 2018

New 4-D printer could reshape the world we live in March 20th, 2018

Leti & Mapper announce cyber-security breakthrough that encrypts individual chips with a code: Low-Cost Cyber-Security Breakthrough that Encrypts Individual Chips With a Unique Code Presented at SPIE Advanced Lithography 2018 in San Jose March 2nd, 2018

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project