Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens.  (c) NANOIDENT Technologies AG
The Patho-ID Chip, designed for the European Defense Agency, will provide rapid, highly sensitive detection of airborne pathogens. (c) NANOIDENT Technologies AG

Abstract:
Printed Sensors a Key Component of Novel Detection System

NANOIDENT Partners With Life Science and Technology Leaders to Detect Airborne Pathogens for European Defence Agency

LINZ, Austria | Posted on April 16th, 2008

NANOIDENT Technologies AG, a leader in the development and manufacture of printed semiconductor-based optoelectronic sensors, today announced the closing of a multi-party agreement with German company microfluidic ChipShop to develop a unique airborne pathogen detection system for the European Defence Agency.

The goal of the project is to develop an autonomous lab-on-a-chip based system, called the PathoID-Chip, for the detection of airborne chemical and biological agents. The system will be able to simultaneously test for multiple pathogens, in a shorter time and with greater sensitivity than is possible with conventional test methods. Tests will be completed in minutes and will be repeated every ten minutes; statistically, this is less time than it should take for a person to become infected. As a result, the presence of harmful substances can be detected in minutes and action can then be taken to reduce exposure.

To achieve these goals, the project combines several novel technologies to collect a sample from the air, inject it into liquid, process it and perform analysis. Other partners in the project include Clemens GmbH, Bundeswehr Institute of Microbiology, Friedrich-Loeffler-Institute, Joanneum Research Forschungsgesellschaft mbH, and Bertin Technologies. NANOIDENT's technology is a core element of the system, and represents a major advance in point-of-use testing. Because optoelectronic sensors are printed onto each chip, the system does not require laboratory handling or bulky, power-hungry, expensive optical readout equipment, making it much more portable, rugged, and tolerant of dust than conventional test systems. The proximity of the sensor to the sample also results in much higher sensitivity than conventional systems.

"Our unique printed sensor technology makes it possible to develop a truly mobile detection system, offering faster detection and minimizing exposure to harmful chemical and biological agents," said Dr. Max Sonnleitner, VP of NANOIDENT's Life Sciences division. "We are proud to contribute a key enabling technology to this innovative project and to be a part of such an outstanding team."

####

About NANOIDENT Technologies AG
NANOIDENT—named by Red Herring as one of the world’s 100 leading technology companies—is the market leader in the development and manufacture of printed semiconductor-based optoelectronic sensors. The company’s core technology merges the latest breakthroughs in materials science and nanotechnology with modern printing techniques to create a new class of semiconductor devices. The revolutionary SEMICONDUCTOR 2.0™ Platform is the basis of the world’s first commercial printed photonic sensors, enabling a whole new generation of applications in the industrial, biometric, and life science markets.

NANOIDENT’s high speed, environmentally friendly manufacturing process utilizes liquid nanomaterials and additive production techniques. These liquids are used to print electronic circuits on a wide variety of surfaces, producing products in mere hours for prototype as well as high volume applications. The company’s printed semiconductor devices can be bendable, disposable, light, ultrathin, and large area. They have application specific spectral and electronic properties, and can contain light sources and light detectors as well as electronic circuits. These unique characteristics enable cost-effective, custom designed devices for applications such as industrial, chemical, biological, and biometric sensors.

Privately held, the company is headquartered in Linz, Austria, with subsidiaries in San Francisco, California; Nuremberg, Germany; and Grenoble, France.

For more information, please click here

Contacts:
NANOIDENT Technologies AG
Ulrike Kaiser, +43 732 9024 0
Fax: +43 732 9044 5

www.nanoident.com
or
Schwartz Communications, Inc.
Kristin Amico, + 1-415-512-0770

Copyright © Business Wire 2008

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Sensors

Researchers discover new chemical sensing technique: Technique allows sharper detail -- and more information -- with near infrared light June 24th, 2016

Artificial synapse rivals biological ones in energy consumption June 21st, 2016

A new form of hybrid photodetectors with quantum dots and graphene June 19th, 2016

Drum beats from a one atom thick graphite membrane June 15th, 2016

Announcements

Texas A&M Chemist Says Trapped Electrons To Blame For Lack Of Battery Efficiency: Forget mousetraps — today’s scientists will get the cheese if they manage to build a better battery June 28th, 2016

Building a smart cardiac patch: 'Bionic' cardiac patch could one day monitor and respond to cardiac problems June 28th, 2016

New, better way to build circuits for world's first useful quantum computers June 28th, 2016

Yale researchers’ technology turns wasted heat into power June 27th, 2016

Homeland Security

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Nanoporous material's strange "breathing" behavior April 7th, 2016

Sniffing out a dangerous vapor: University of Utah engineers develop material that can sense fuel leaks and fuel-based explosives March 28th, 2016

Detecting and identifying explosives with single test December 10th, 2015

Military

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Ultrathin, flat lens resolves chirality and color: Multifunctional lens could replace bulky, expensive machines June 25th, 2016

Scientists engineer tunable DNA for electronics applications June 21st, 2016

Marrying superconductors, lasers, and Bose-Einstein condensates: Chapman University Institute for Quantum Studies (IQS) member Yutaka Shikano, Ph.D., recently had research published in Scientific Reports June 20th, 2016

Alliances/Trade associations/Partnerships/Distributorships

FEI and University of Liverpool Announce QEMSCAN Research Initiative: University of Liverpool will utilize FEI’s QEMSCAN technology to gain a better insight into oil and gas reserves & potentially change the approach to evaluating them June 22nd, 2016

French Research Team Helps Extend MRI Detection of Diseases & Lower Health-Care Costs: CEA, INSERM and G2ELab Brings Grenoble Region’s Expertise In Advanced Medicine & Magnetism Applications to H2020 IDentIFY Project June 21st, 2016

Research showing why hierarchy exists will aid the development of artificial intelligence June 13th, 2016

UK NANOSAFETY GROUP publishes 2nd Edition of guidance to support safe working with nanomaterials May 30th, 2016

Printing/Lithography/Inkjet/Inks

Nanoscientists develop the 'ultimate discovery tool': Rapid discovery power is similar to what gene chips offer biology June 25th, 2016

Perovskite solar cells surpass 20 percent efficiency: EPFL researchers are pushing the limits of perovskite solar cell performance by exploring the best way to grow these crystals June 13th, 2016

'On-the-fly' 3-D print system prints what you design, as you design it June 1st, 2016

Physicists create first metamaterial with rewritable magnetic ordering May 23rd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic