Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NIST Micro Sensor and Micro Fridge Make Cool Pair

Colorized micrograph of a NIST chip combining four microrefrigerators (circled in red) with a superconducting sensor (large orange square in the middle). The self-cooling chip could be used for applications ranging from detailed X-ray analysis of semiconductors to detection of microwave signals in deep space.

Credit: N. Miller, K. Talbott NIST
Colorized micrograph of a NIST chip combining four microrefrigerators (circled in red) with a superconducting sensor (large orange square in the middle). The self-cooling chip could be used for applications ranging from detailed X-ray analysis of semiconductors to detection of microwave signals in deep space.

Credit: N. Miller, K. Talbott NIST

Abstract:
Researchers at the National Institute of Standards and Technology (NIST) have combined two tiny but powerful NIST inventions on a single microchip, a cryogenic sensor and a microrefrigerator. The combination offers the possibility of cheaper, simpler and faster precision analysis of materials such as semiconductors and stardust.

NIST Micro Sensor and Micro Fridge Make Cool Pair

GAITHERSBURG, MD | Posted on April 15th, 2008

As described in an upcoming issue of Applied Physics Letters,* the NIST team combined a transition-edge sensor (TES), a superconducting thin film that identifies X-ray signatures far more precisely than any other device, with a solid-state refrigerator based on a sandwich of a normal metal, an insulator and a superconductor. The combo chip, a square about a quarter inch on a side, achieved the first cooling of a fully functional detector (or any useful device) with a microrefrigerator. The paper also reports the greatest temperature reduction in a separate object by microrefrigerators: a temperature drop of 110 millikelvins (mK), or about a tenth of a degree Celsius.

TES sensors are most sensitive at about 100 mK (a tenth of a degree Celsius above absolute zero). However, these ultralow temperatures are usually reached only by bulky, complex refrigerators. Because the NIST chip can provide some of its own cooling, it can be combined easily with a much simpler refrigerator that starts at room temperature and cools down to about 300 mK, says lead scientist Joel Ullom. In this setup, the chip would provide the second stage of cooling from 300mK down to the operating temperature (100 mK).

One promising application is cheaper, simpler semiconductor defect analysis using X-rays. A small company is already commercializing an earlier version of TES technology for this purpose. In another application, astronomical telescopes are increasingly using TES arrays to take pictures of the early universe at millimeter wavelengths. Use of the NIST chips would lower the temperature and increase the speed at which these images could be made, Ullom says.

For background on how TESs and microrefrigerators work, see "Copper Ridges Nearly Double X-ray Sensor Performance" (Tech Beat, Nov. 17, 2005), and "Chip-scale Refrigerators Cool Bulk Objects" (Tech Beat, April 21, 2005).

The work was supported in part by the National Aeronautics and Space Administration.

* N.A. Miller, G.C. O'Neil, J.A. Beall, G.C. Hilton, K.D. Irwin, D.R. Schmidt, L.R. Vale and J.N. Ullom. High resolution X-ray transition-edge sensor cooled by tunnel junction refrigerators. Forthcoming in Applied Physics Letters.

Media Contact: Laura Ost,

####

About NIST
The National Institute of Standards and Technology (NIST) is a non-regulatory agency of the U.S. Department of Commerce. NIST promotes U.S. innovation and industrial competitiveness by advancing measurement science, standards and technology in ways that enhance economic security and improve our quality of life.

For more information, please click here

Contacts:
Laura Ost

(303) 497-4880

Copyright © NIST

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

Chip Technology

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

New chip makes testing for antibiotic-resistant bacteria faster, easier: Researchers at the University of Toronto design diagnostic chip to reduce testing time from days to one hour, allowing doctors to pick the right antibiotic the first time May 28th, 2015

Collaboration could lead to biodegradable computer chips May 28th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Discoveries

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

New technique speeds nanoMRI imaging: Multiplexing technique for nanoscale magnetic resonance imaging developed by researchers in Switzerland cuts normal scan time from two weeks to two days May 28th, 2015

Announcements

Stanford breakthrough heralds super-efficient light-based computers: Light can transmit more data while consuming far less power than electricity, and an engineering feat brings optical data transport closer to replacing wires May 29th, 2015

Donuts, math, and superdense teleportation of quantum information May 29th, 2015

OSU researchers prove magnetism can control heat, sound: Team leverages OSC services to help confirm, interpret experimental findings May 29th, 2015

Two UCSB Professors Receive Early Career Research Awards: The Department of Energy’s award for young scientists acknowledges UC Santa Barbara’s standing as a top tier research institution May 29th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project