Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Ford Scientists Look to Nanotechnology for Performance, Fuel Economy Improvements

Abstract:
Ford (NYSE: F) is leaving no particle unturned in the quest for fuel efficiency.

Ford Scientists Look to Nanotechnology for Performance, Fuel Economy Improvements

DETROIT, MI | Posted on April 14th, 2008

Ford scientists are embracing the burgeoning fields of nanotechnology in developing paints, plastics, light metals and catalysts that allow Ford to reduce vehicle weight and improve fuel economy without sacrificing quality.

Company researchers plan to outline key ways Ford is leveraging nanoparticles to improve automotive materials during this week's 2008 SAE World Congress in Detroit.

"Industry is becoming more efficient at creating nanoparticles," said Matthew Zaluzec, manager of the Materials Science & Nanotechnology Department for Ford Research and Advanced Engineering. "Our challenge is to take those nanoparticles, separate them and disperse them into existing materials in a way that makes our vehicles lighter, more durable, and more fuel efficient."

Ford has called out vehicle weight reduction as a key part of its strategy to improve fuel economy by 40 percent by 2020. The goal is reduce vehicle weight from 250 to 750 pounds -- depending on the model -- between 2012 and 2020 without compromising safety.

Ford powertrains already are benefiting from the company's grasp of nanotechnology and mircomechanical properties. A Ford study dubbed "Atoms to Engines" looked at the structure of cast aluminum alloys at near atomic levels. From this work, a detailed analysis of the structure/property/process relationship of the aluminum alloy engine blocks has led to reduced engine weight and, in turn, increased fuel efficiency.

"Many thought our aluminum engine technology was mature and fully optimized," Zaluzec said. "Not until we looked at every aspect of the materials and manufacturing process were we able to pull out another 10 percent in structural performance out of our engines, which directly translates into weight and fuel economy savings year over year. It's nano at the working level."

Ford's European research lab in Aachen, Germany, is developing a thermally sprayed nano-coating that could replace the heavier cast iron liners that provide the necessary wear resistance of cylinder bores in aluminum block engines. Presented at this year's SAE World Congress, this thin wear-resistant coating reduces weight and improves friction performance while delivering equal durability and reliability to the product.

Coatings in the way of vehicle exterior paint can benefit from Ford's nano-knowledge, too. Researchers are evaluating advanced surface coating applications that could enhance paint adhesion, appearance and durability.

"We want to take paint beyond what our customers are used to seeing on a vehicle," Zaluzec said. "We constantly ask questions like, can I change the functionality of a paint layer to give a unique appearance, to control heat dissipation or improve durability beyond what we've achieved to date?"

Nanotechnology also is being tapped by Ford scientists to help develop smarter solutions to energy storage issues for alternative power sources such as lithium-ion batteries and fuel cells.

Nanotechnology holds great promise in the auto industry. By 2015, experts predict nanomaterials will reach 70 percent usage in automotive applications.

####

About Ford Motor Company
Ford was one of the first automakers to apply nanotechnology to its products with the advent of today's catalytic converter. Ford has been active since the 1970s in exhaust catalysis and emissions controls, which are nano-based systems. Ford also was an early leader in the application of scanning probe microscopes, which allowed scientists to better view matter at a nano level.

In 2007, Ford bolstered its leadership in nano studies by forming an alliance with Boeing and Northwestern University in Evanston, Ill., one of the early leaders in the field of nanoscience and home to one of the first nanotechnology centers in the country. The alliance, which was created to research commercial applications of nanotechnology, is producing promising results in the areas of specialty metals, plastic composites, thermal materials, coatings and sensors that could have large-scale uses across the transportation industry in the future.

For more information, please click here

Copyright © PR Newswire Association LLC.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Materials/Metamaterials

Clay nanotube-biopolymer composite scaffolds for tissue engineering May 1st, 2016

Exploring phosphorene, a promising new material April 29th, 2016

Hybrid nanoantennas -- next-generation platform for ultradense data recording April 28th, 2016

Atomic magnets using hydrogen and graphene April 27th, 2016

Announcements

Oxford Instruments Asylum Research and McGill University Announce the McGill AFM Summer School and Workshop, May 12-13, 2016 May 4th, 2016

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

FEI Launches Apreo Industry-Leading Versatile, High-Performance SEM: The Apreo SEM provides high-resolution surface information with excellent contrast, and the flexibility to accommodate a large range of samples, applications and conditions May 4th, 2016

Energy

Nanoparticles present sustainable way to grow food crops May 1st, 2016

NREL finds nanotube semiconductors well-suited for PV systems April 27th, 2016

Researchers create artificial protein to control assembly of buckyballs April 27th, 2016

Flipping a chemical switch helps perovskite solar cells beat the heat April 26th, 2016

Automotive/Transportation

New spin Seebeck thermoelectric device with higher conversion efficiency created April 26th, 2016

All powered up: UCI chemists create battery technology with off-the-charts charging capacity April 21st, 2016

Ruthenium nanoframes open the doors to better catalysts April 4th, 2016

Heat and light get larger at the nanoscale: Columbia-led research team first to demonstrate a strong, non-contact heat transfer channel using light with performances that could lead to high efficiency electricity generation April 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic