Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Popcorn-ball design doubles efficiency of dye-sensitized solar cells

 University of Washington
A close-up of a single ball, taken with a scanning electron microscope. The 300-nanometer sphere is large enough to scatter light. But its insides are made of tiny grains just 15 nanometers across.
University of Washington
A close-up of a single ball, taken with a scanning electron microscope. The 300-nanometer sphere is large enough to scatter light. But its insides are made of tiny grains just 15 nanometers across.

Abstract:
A new approach is able to create a dramatic improvement in cheap solar cells now being developed in laboratories.

By using a popcorn-ball design -- tiny kernels clumped into much larger porous spheres -- researchers at the University of Washington are able to manipulate light and more than double the efficiency of converting solar energy to electricity. The findings will be presented today in New Orleans at the national meeting of the American Chemical Society.

Popcorn-ball design doubles efficiency of dye-sensitized solar cells

Seattle, WA | Posted on April 10th, 2008

"We think this can lead to a significant breakthrough in dye-sensitized solar cells," said lead author Guozhong Cao, a UW professor of materials science and engineering.

Dye-sensitized solar cells, first popularized in a scientific article in 1991, are more flexible, easier to manufacture and cheaper than existing solar technologies. Researchers have tried various rough surfaces and achieved higher and higher efficiencies. Current lab prototypes can convert just over one tenth of the incoming sun's energy into electricity. This is about half as efficient as the commercial, silicon-based cells used in rooftop panels and calculators.

The UW researchers did not attempt to maximize the overall efficiency of a dye-sensitized solar cell to match or beat these previous records. Instead, they focused on developing new approaches and compared the performance of a homogeneous rough surface with a clumping design. One of the main quandaries in making an efficient solar cell is the size of the grains. Smaller grains have bigger surface area per volume, and thus absorb more rays. But bigger clumps, closer to the wavelength of visible light, cause light to ricochet within the thin light-absorbing surface so it has a higher chance of being absorbed.

"You want to have a larger surface area by making the grains smaller," Cao said. "But if you let the light bounce back and forth several times, then you have more chances of capturing the energy."

Other researchers have tried mixing larger grains in with the small particles to scatter the light, but have little success in boosting efficiency. The UW group instead made only very tiny grains, about 15 nanometers across. (Lining up 3,500 grains end to end would equal the width of a human hair.) Then they clumped these into larger agglomerations, about 300 nanometers across. The larger balls scatter incoming rays and force light to travel a longer distance within the solar cell. The balls' complex internal structure, meanwhile, creates a surface area of about 1,000 square feet for each gram of material. This internal surface is coated with a dye that captures the light.

The researchers expected some improvement in the performance but what they saw exceeded their hopes.

"We did not expect the doubling," Cao said. "It was a happy surprise."

The overall efficiency was 2.4 percent using only small particles, which is the highest efficiency achieved for this material. With the popcorn-ball design, results presented today at the conference show an efficiency of 6.2 percent, more than double the previous performance.

"The most significant finding is the amount of increase using this unique approach," Cao said.

The experiments were performed using zinc oxide, which is less stable chemically than the more commonly used titanium oxide but easier to work with.

"We first wanted to prove the concept in an easier material. Now we are working on transferring this concept to titanium oxide," Cao said. Titanium oxide based dye-sensitized solar cells are now at 11 percent maximum efficiency. Cao hopes his strategy could push dye-sensitized solar cells' efficiency significantly over that threshold.

The research was funded by the National Science Foundation, the Department of Energy, Washington Technology Center and the Air Force Office of Scientific Research. Co-authors are postdoctoral researcher Qifeng Zhang, research associate Tammy Chou and graduate student Bryan Russo, all in the UW's department of materials science and engineering and Samson Jenekhe, a UW professor of chemical engineering.

####

About University of Washington
Founded in 1861, the University of Washington is one of the oldest state-supported institutions of higher education on the West Coast and is one of the preeminent research universities in the world. (Read more about the UW's history)

The UW educates a diverse student body to become responsible global citizens and future leaders through a challenging learning environment informed by cutting-edge scholarship.

We discover timely solutions to the world’s most complex problems and enrich people’s lives throughout our community, the state of Washington, the nation and the world.

For more information, please click here

Contacts:
Cao
(206) 616-9084


During the meeting
contact Cao at
(206) 383-3389.

Copyright © University of Washington

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Energy

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

The efficient perovskite cells with a structured anti-reflective layer – another step towards commercialization on a wider scale October 6th, 2023

Solar/Photovoltaic

Development of zinc oxide nanopagoda array photoelectrode: photoelectrochemical water-splitting hydrogen production January 12th, 2024

Shedding light on unique conduction mechanisms in a new type of perovskite oxide November 17th, 2023

Inverted perovskite solar cell breaks 25% efficiency record: Researchers improve cell efficiency using a combination of molecules to address different November 17th, 2023

Charged “molecular beasts” the basis for new compounds: Researchers at Leipzig University use “aggressive” fragments of molecular ions for chemical synthesis November 3rd, 2023

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project