Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology could solve lithium battery charging problems

Abstract:
Sweet nanotech batteries

Nanotechnology could solve lithium battery charging problems

China | Posted on April 10th, 2008

Nanotechnology could improve the life of the lithium batteries used in portable devices, including laptop computers, mp3 players, and mobile phones. Research to be published in the Inderscience publication - International Journal of Nanomanufacturing - demonstrates that carbon nanotubes can prevent such batteries from losing their charge capacity over time.

Researchers at the Shenyang National Laboratory for Materials Science, in China, have been investigating how to improve the kind of rechargeable batteries that are almost ubiquitous in today's portable devices. Mobile phones, mp3 players, personal digital assistants (PDAs), and laptop computers usually use lithium-ion batteries to give them portability. However, Li-ion batteries suffer from degradation especially when they get too hot or too cold and eventually lose the capacity to be fully recharged. This means a loss of talk time for mobile phone users and often no chance to use a laptop for the whole of a long haul flight.

The problem of the slow degradation of Li-ion batteries is usually due to the formation of a solid electrolyte interphase film that increase the batteries internal resistance and prevents a full recharge. Researchers have suggested using silicon in the composition of the negative electrode material in Li-ion batteries to improve charge capacity. However, this material leads to even faster capacity loss as it repeatedly alloys and then de-alloys during charge-discharge cycles.

Shengyang's Hui-Ming Cheng and colleagues have turned to carbon nanotubes (CNTs) to help them use silicon (Si) as the battery anode but avoid the problem of large volume change during alloying and de-alloying. Carbon nanotubes resemble rolled-up sheets of hexagonal chicken wire with a carbon atom at the crossover points of the wires and the wires themselves being the bonds between carbon atoms, and they can be up to a millimeter long but mere nanometers in diameter.

The researchers grew carbon nanotubes on the surface of tiny particles of silicon using a technique known as chemical vapor deposition in which a carbon-containing vapor decomposes and then condenses on the surface of the silicon particles forming the nanoscopic tubes. They then coated these particles with carbon released from sugar at a high temperature in a vacuum. A separate batch of silicon particles produced using sugar but without the CNTs was also prepared.

With the new Si-CNT anode material to hand, the team then investigated how well it functioned in a prototype Li-ion battery and compared the results with the material formed from sugar-coated silicon particles.

They found that after twenty cycles of the semi-cell experiments, the sugar-coated Si-CNT composite material achieved a discharge capacity of 727 milliamp hours per gram. In contrast the charge capacity of the simple sugar-coated particles had dropped to just 363 mAh per gram.

####

For more information, please click here

Contacts:
Hui-Ming Cheng

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Mass spectrometers with optimised hydrogen pumping March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Nanotubes/Buckyballs

Chromium-Centered Cycloparaphenylene Rings as New Tools for Making Functionalized Nanocarbons February 24th, 2015

Building tailor-made DNA nanotubes step by step: New, block-by-block assembly method could pave way for applications in opto-electronics, drug delivery February 23rd, 2015

Half spheres for molecular circuits: Corannulene shows promising electronic properties February 17th, 2015

SouthWest Nanotechnologies CEO Dave Arthur Appointed to the Board of Affiliates of Rice University Professional Science Master’s Program February 13th, 2015

Discoveries

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

Scientific breakthrough in rechargeable batteries: Researchers from Singapore and Québec Team Up to Develop Next-Generation Materials to Power Electronic Devices and Electric Vehicles February 28th, 2015

In quest for better lithium-air batteries, chemists boost carbon's stability: Nanoparticle coatings improve stability, cyclability of '3DOm' carbon February 25th, 2015

Dendrite eraser: New electrolyte rids batteries of short-circuiting fibers: Solution enables a battery with both high efficiency & current density February 24th, 2015

New Paper-like Material Could Boost Electric Vehicle Batteries: Researchers create silicon nanofibers 100 times thinner than human hair for potential applications in batteries for electric cars and personal electronics February 20th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE