Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanotechnology could solve lithium battery charging problems

Abstract:
Sweet nanotech batteries

Nanotechnology could solve lithium battery charging problems

China | Posted on April 10th, 2008

Nanotechnology could improve the life of the lithium batteries used in portable devices, including laptop computers, mp3 players, and mobile phones. Research to be published in the Inderscience publication - International Journal of Nanomanufacturing - demonstrates that carbon nanotubes can prevent such batteries from losing their charge capacity over time.

Researchers at the Shenyang National Laboratory for Materials Science, in China, have been investigating how to improve the kind of rechargeable batteries that are almost ubiquitous in today's portable devices. Mobile phones, mp3 players, personal digital assistants (PDAs), and laptop computers usually use lithium-ion batteries to give them portability. However, Li-ion batteries suffer from degradation especially when they get too hot or too cold and eventually lose the capacity to be fully recharged. This means a loss of talk time for mobile phone users and often no chance to use a laptop for the whole of a long haul flight.

The problem of the slow degradation of Li-ion batteries is usually due to the formation of a solid electrolyte interphase film that increase the batteries internal resistance and prevents a full recharge. Researchers have suggested using silicon in the composition of the negative electrode material in Li-ion batteries to improve charge capacity. However, this material leads to even faster capacity loss as it repeatedly alloys and then de-alloys during charge-discharge cycles.

Shengyang's Hui-Ming Cheng and colleagues have turned to carbon nanotubes (CNTs) to help them use silicon (Si) as the battery anode but avoid the problem of large volume change during alloying and de-alloying. Carbon nanotubes resemble rolled-up sheets of hexagonal chicken wire with a carbon atom at the crossover points of the wires and the wires themselves being the bonds between carbon atoms, and they can be up to a millimeter long but mere nanometers in diameter.

The researchers grew carbon nanotubes on the surface of tiny particles of silicon using a technique known as chemical vapor deposition in which a carbon-containing vapor decomposes and then condenses on the surface of the silicon particles forming the nanoscopic tubes. They then coated these particles with carbon released from sugar at a high temperature in a vacuum. A separate batch of silicon particles produced using sugar but without the CNTs was also prepared.

With the new Si-CNT anode material to hand, the team then investigated how well it functioned in a prototype Li-ion battery and compared the results with the material formed from sugar-coated silicon particles.

They found that after twenty cycles of the semi-cell experiments, the sugar-coated Si-CNT composite material achieved a discharge capacity of 727 milliamp hours per gram. In contrast the charge capacity of the simple sugar-coated particles had dropped to just 363 mAh per gram.

####

For more information, please click here

Contacts:
Hui-Ming Cheng

Copyright © Inderscience Publishers

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Nanotubes/Buckyballs

Carbon nanotube fibers make superior links to brain: Rice University invention provides two-way communication with neurons March 25th, 2015

Iranian Scientists Eliminate Expensive Materials from Diabetes Diagnosis Sensors March 25th, 2015

Effect of Carbon Nanotubes on Properties of Cement Composites Studied in Iran March 23rd, 2015

First proof of isolated attosecond pulse generation at the carbon K-edge March 20th, 2015

Discoveries

Graphene reduces wear of alumina ceramic March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Announcements

Industrial Nanotech, Inc. Announces Next Large Order from the Oil and Gas Industry March 26th, 2015

Quantum compute this -- WSU mathematicians build code to take on toughest of cyber attacks: Revamped knapsack code offers online security for the future March 26th, 2015

Thousands of atoms entangled with a single photon: Result could make atomic clocks more accurate March 26th, 2015

Square ice filling for a graphene sandwich March 26th, 2015

Battery Technology/Capacitors/Generators/Piezoelectrics/Thermoelectrics/Energy storage

New processing technology converts packing peanuts to battery components March 22nd, 2015

NC State researchers create 'nanofiber gusher': Report method of fabricating larger amounts of nanofibers in liquid March 19th, 2015

Drexel Univ. materials research could unlock potential of lithium-sulfur batteries March 17th, 2015

Silk could be new 'green' material for next-generation batteries March 11th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE