Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon nanotubes made into conductive, flexible 'stained glass'

Abstract:
Carbon nanotubes are promising materials for many high-technology applications due to their exceptional mechanical, thermal, chemical, optical and electrical properties.

Carbon nanotubes made into conductive, flexible 'stained glass'

EVANSTON, IL | Posted on April 9th, 2008

Now researchers at Northwestern University have used metallic nanotubes to make thin films that are semitransparent, highly conductive, flexible and come in a variety of colors, with an appearance similar to stained glass. These results, published online in the journal Nano Letters, could lead to improved high-tech products such as flat-panel displays and solar cells.

The diverse and exemplary properties of carbon nanotubes have inspired a vast range of proposed applications including transistors, logic gates, interconnects, conductive films, field emission sources, infrared emitters, biosensors, scanning probes, nanomechanical devices, mechanical reinforcements, hydrogen storage elements and catalytic supports.

Among these applications, transparent conductive films based on carbon nanotubes have attracted significant attention recently. Transparent conductors are materials that are optically transparent, yet electrically conductive. These materials are commonly utilized as electrodes in flat-panel displays, touch screens, solid-state lighting and solar cells. With pressure for energy-efficient devices and alternative energy sources increasing, the worldwide demand for transparent conductive films also is rapidly increasing.

Indium tin oxide currently is the dominant material for transparent conductive applications. However, the relative scarcity of indium coupled with growing demand has led to substantial cost increases in the past five years. In addition to this economic issue, indium tin oxide suffers from limited optical tunability and poor mechanical flexibility, which compromises its use in applications such as organic light-emitting diodes and organic photovoltaic devices.

The Northwestern team has taken an important step toward identifying an alternative transparent conductor. Utilizing a technique known as density gradient ultracentrifugation, the researchers have produced carbon nanotubes with uniform electrical and optical properties. Thin films formulated from these high purity carbon nanotubes possess 10-fold improvements in conductivity compared to pre-existing carbon nanotube materials.

In addition, density gradient ultracentrifugation allows carbon nanotubes to be sorted by their optical properties, enabling the formation of semitransparent conductive films of a given color. The resulting films thus have the appearance of stained glass. However, unlike stained glass, these carbon nanotube thin films possess high electrical conductivity and mechanical flexibility. The latter property overcomes one of the major limitations of indium tin oxide in flexible electronic and photovoltaic applications.

"Transparent conductors have become ubiquitous in modern society -- from computer monitors to cell phone displays to flat-panel televisions," said Mark Hersam, professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences, who led the research team.

"High purity carbon nanotube thin films not only have the potential to make inroads into current applications but also accelerate the development of emerging technologies such as organic light-emitting diodes and organic photovoltaic devices. These energy-efficient and alternative energy technologies are expected to be of increasing importance in the foreseeable future."

In addition to Hersam, the other author of the Nano Letters paper is Alexander Green, a graduate student in materials science and engineering at Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Copper shines as flexible conductor August 29th, 2014

LEDs made from ‘wonder material’ perovskite: Colourful LEDs made from a material known as perovskite could lead to LED displays which are both cheaper and easier to manufacture in future August 5th, 2014

Thin films

Picosun joins forces with IMEC for novel, industrial ALD applications August 25th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

Advanced thin-film technique could deliver long-lasting medication: Nanoscale, biodegradable drug-delivery method could provide a year or more of steady doses August 6th, 2014

Nanotubes/Buckyballs

SouthWest NanoTechnologies CEO Dave Arthur to Discuss “Carbon Nanotubes and Automotive Applications” at The Automotive Composites Conference and Expo 2014 (ACCE2014) August 28th, 2014

Iranian Scientists Stabilize Protein on Highly Stable Electrode Surface August 14th, 2014

SouthWest NanoTechnologies Appoints Matteson-Ridolfi for U.S. Distribution of its SMW™ Specialty Multiwall Carbon Nanotubes August 13th, 2014

Immune cells get cancer-fighting boost from nanomaterials August 13th, 2014

Discoveries

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

Copper shines as flexible conductor August 29th, 2014

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Announcements

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Nanoscale assembly line August 29th, 2014

New analytical technology reveals 'nanomechanical' surface traits August 29th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Solar/Photovoltaic

Novel 'butterfly' molecule could build new sensors, photoenergy conversion devices August 28th, 2014

Competition for Graphene: Berkeley Lab Researchers Demonstrate Ultrafast Charge Transfer in New Family of 2D Semiconductors August 26th, 2014

Eco-friendly 'pre-fab nanoparticles' could revolutionize nano manufacturing: UMass Amherst team invents a way to create versatile, water-soluble nano-modules August 13th, 2014

An Inkjet-Printed Field-Effect Transistor for Label-Free Biosensing August 11th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE