Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon nanotubes made into conductive, flexible 'stained glass'

Abstract:
Carbon nanotubes are promising materials for many high-technology applications due to their exceptional mechanical, thermal, chemical, optical and electrical properties.

Carbon nanotubes made into conductive, flexible 'stained glass'

EVANSTON, IL | Posted on April 9th, 2008

Now researchers at Northwestern University have used metallic nanotubes to make thin films that are semitransparent, highly conductive, flexible and come in a variety of colors, with an appearance similar to stained glass. These results, published online in the journal Nano Letters, could lead to improved high-tech products such as flat-panel displays and solar cells.

The diverse and exemplary properties of carbon nanotubes have inspired a vast range of proposed applications including transistors, logic gates, interconnects, conductive films, field emission sources, infrared emitters, biosensors, scanning probes, nanomechanical devices, mechanical reinforcements, hydrogen storage elements and catalytic supports.

Among these applications, transparent conductive films based on carbon nanotubes have attracted significant attention recently. Transparent conductors are materials that are optically transparent, yet electrically conductive. These materials are commonly utilized as electrodes in flat-panel displays, touch screens, solid-state lighting and solar cells. With pressure for energy-efficient devices and alternative energy sources increasing, the worldwide demand for transparent conductive films also is rapidly increasing.

Indium tin oxide currently is the dominant material for transparent conductive applications. However, the relative scarcity of indium coupled with growing demand has led to substantial cost increases in the past five years. In addition to this economic issue, indium tin oxide suffers from limited optical tunability and poor mechanical flexibility, which compromises its use in applications such as organic light-emitting diodes and organic photovoltaic devices.

The Northwestern team has taken an important step toward identifying an alternative transparent conductor. Utilizing a technique known as density gradient ultracentrifugation, the researchers have produced carbon nanotubes with uniform electrical and optical properties. Thin films formulated from these high purity carbon nanotubes possess 10-fold improvements in conductivity compared to pre-existing carbon nanotube materials.

In addition, density gradient ultracentrifugation allows carbon nanotubes to be sorted by their optical properties, enabling the formation of semitransparent conductive films of a given color. The resulting films thus have the appearance of stained glass. However, unlike stained glass, these carbon nanotube thin films possess high electrical conductivity and mechanical flexibility. The latter property overcomes one of the major limitations of indium tin oxide in flexible electronic and photovoltaic applications.

"Transparent conductors have become ubiquitous in modern society -- from computer monitors to cell phone displays to flat-panel televisions," said Mark Hersam, professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences, who led the research team.

"High purity carbon nanotube thin films not only have the potential to make inroads into current applications but also accelerate the development of emerging technologies such as organic light-emitting diodes and organic photovoltaic devices. These energy-efficient and alternative energy technologies are expected to be of increasing importance in the foreseeable future."

In addition to Hersam, the other author of the Nano Letters paper is Alexander Green, a graduate student in materials science and engineering at Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Thin films

Electrospray solves longstanding problem in Langmuir-Blodgett assembly: The electrospray spreads water-soluble solvents on water while minimizing mixing August 20th, 2015

Scientists achieve major breakthrough in thin-film magnetism August 17th, 2015

Rice, Penn State open center for 2-D coatings: National Science Foundation selects universities to develop atom-thin materials with industry partners August 13th, 2015

Display technology/LEDs/SS Lighting/OLEDs

'Quantum dot' technology may help light the future August 19th, 2015

High-precision control of nanoparticles for digital applications August 19th, 2015

Nanotubes/Buckyballs/Fullerenes

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Southampton scientists find new way to detect ortho-para conversion in water August 25th, 2015

Revolutionary MIT-Developed Nanotechnology Company Showcases at CAMX in Dallas August 20th, 2015

Engineering a better 'Do: Purdue researchers are learning how August 4th, 2015

Discoveries

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Successful boron-doping of graphene nanoribbon August 27th, 2015

Announcements

Small but heading for the big time: Nanobiotix half year results for the six months ended 30 June 2015, in line with expectations: Major clinical achievements and corporate developments August 28th, 2015

A new technique to make drugs more soluble August 28th, 2015

Nanocatalysts improve processes for the petrochemical industry August 28th, 2015

Nanolab Technologies LEAPS Forward with High-Performance Analysis Services to the World: Nanolab Orders Advanced Local Electrode Atom Probe (LEAP®) Microscope from CAMECA Unit of AMETEK Materials Analysis Division August 27th, 2015

Solar/Photovoltaic

CWRU researchers efficiently charge a lithium-ion battery with solar cell: Coupling with perovskite solar cell holds potential for cleaner cars and more August 27th, 2015

Novel nanostructures for efficient long-range energy transport August 21st, 2015

Charge transport in hybrid silicon solar cells August 17th, 2015

Nano Electrolyte Additives Increase Efficiency of Solar Cells August 10th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic