Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Carbon nanotubes made into conductive, flexible 'stained glass'

Abstract:
Carbon nanotubes are promising materials for many high-technology applications due to their exceptional mechanical, thermal, chemical, optical and electrical properties.

Carbon nanotubes made into conductive, flexible 'stained glass'

EVANSTON, IL | Posted on April 9th, 2008

Now researchers at Northwestern University have used metallic nanotubes to make thin films that are semitransparent, highly conductive, flexible and come in a variety of colors, with an appearance similar to stained glass. These results, published online in the journal Nano Letters, could lead to improved high-tech products such as flat-panel displays and solar cells.

The diverse and exemplary properties of carbon nanotubes have inspired a vast range of proposed applications including transistors, logic gates, interconnects, conductive films, field emission sources, infrared emitters, biosensors, scanning probes, nanomechanical devices, mechanical reinforcements, hydrogen storage elements and catalytic supports.

Among these applications, transparent conductive films based on carbon nanotubes have attracted significant attention recently. Transparent conductors are materials that are optically transparent, yet electrically conductive. These materials are commonly utilized as electrodes in flat-panel displays, touch screens, solid-state lighting and solar cells. With pressure for energy-efficient devices and alternative energy sources increasing, the worldwide demand for transparent conductive films also is rapidly increasing.

Indium tin oxide currently is the dominant material for transparent conductive applications. However, the relative scarcity of indium coupled with growing demand has led to substantial cost increases in the past five years. In addition to this economic issue, indium tin oxide suffers from limited optical tunability and poor mechanical flexibility, which compromises its use in applications such as organic light-emitting diodes and organic photovoltaic devices.

The Northwestern team has taken an important step toward identifying an alternative transparent conductor. Utilizing a technique known as density gradient ultracentrifugation, the researchers have produced carbon nanotubes with uniform electrical and optical properties. Thin films formulated from these high purity carbon nanotubes possess 10-fold improvements in conductivity compared to pre-existing carbon nanotube materials.

In addition, density gradient ultracentrifugation allows carbon nanotubes to be sorted by their optical properties, enabling the formation of semitransparent conductive films of a given color. The resulting films thus have the appearance of stained glass. However, unlike stained glass, these carbon nanotube thin films possess high electrical conductivity and mechanical flexibility. The latter property overcomes one of the major limitations of indium tin oxide in flexible electronic and photovoltaic applications.

"Transparent conductors have become ubiquitous in modern society -- from computer monitors to cell phone displays to flat-panel televisions," said Mark Hersam, professor of materials science and engineering in Northwestern's McCormick School of Engineering and Applied Science and professor of chemistry in the Weinberg College of Arts and Sciences, who led the research team.

"High purity carbon nanotube thin films not only have the potential to make inroads into current applications but also accelerate the development of emerging technologies such as organic light-emitting diodes and organic photovoltaic devices. These energy-efficient and alternative energy technologies are expected to be of increasing importance in the foreseeable future."

In addition to Hersam, the other author of the Nano Letters paper is Alexander Green, a graduate student in materials science and engineering at Northwestern.

####

For more information, please click here

Contacts:
Megan Fellman

847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Thin films

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

Display technology/LEDs/SS Lighting/OLEDs

Transparent Conductive Films and Sensors Are Hot Segments in Printed Electronics: Start-ups in these fields show above-average momentum, while companies working on emissive displays such as OLED are fading, Lux Research says April 17th, 2014

PAM-XIAMEN Offers UV LED wafer April 15th, 2014

Better solar cells, better LED light and vast optical possibilities April 12th, 2014

Printed Electronics Europe - Plastic Logic shows a flexible OLED display for wearable devices April 11th, 2014

Nanotubes/Buckyballs

Effects of Carbon Nanotubes Studied on Pregnant Mothers April 12th, 2014

Nanotech Business Review 2013-2014 April 9th, 2014

Scientists Succeed in Simultaneous Determination of Acetaminophen, Codeine in Drug Samples April 9th, 2014

Rebar technique strengthens case for graphene: Rice University lab makes hybrid nanotube-graphene material that promises to simplify manufacturing April 7th, 2014

Discoveries

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Announcements

Iranian Researchers Present New Model to Strengthen Superconductivity at Higher Temperatures April 19th, 2014

Iranian Researchers Produce New Anti-Cancer Drug from Turmeric April 19th, 2014

'Exotic' material is like a switch when super thin April 18th, 2014

Innovative strategy to facilitate organ repair April 18th, 2014

Solar/Photovoltaic

High-temperature plasmonics eyed for solar, computer innovation April 17th, 2014

A molecular approach to solar power: Switchable material could harness the power of the sun ó even when itís not shining April 15th, 2014

Shiny quantum dots brighten future of solar cells: Photovoltaic solar-panel windows could be next for your house April 14th, 2014

Scientists open door to better solar cells, superconductors and hard-drives: Research enhances understanding of materials interfaces April 14th, 2014

NanoNews-Digest
The latest news from around the world, FREE







  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE