Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button

Home > Press > Making Sure the Wonder Materials Don’t Become the Wonder Pollutant

Abstract:
As useful as nanotubes may be, the process of making them may have unintentional and potentially harmful impacts on the environment.

Making Sure the Wonder Materials Don’t Become the Wonder Pollutant

Woods Hole, MA | Posted on April 8th, 2008

Carbon nanotubes are 10,000 times thinner than a human hair, yet stronger than steel and more durable than diamonds. They conduct heat and electricity with efficiency that rivals copper wires and silicon chips, with possible uses in everything from concrete and clothes to bicycle parts and electronics. The have been hailed as the next "wonder material" for what could become a multi-billion dollar manufacturing industry in the 21st century.

But as useful as nanotubes may be, the process of making them may have unintentional and potentially harmful impacts on the environment. MIT/WHOI graduate student Desirée Plata and her mentors—chemists Phil Gschwend of the Massachusetts Institute of Technology and Chris Reddy of the Woods Hole Oceanographic Institution—recently analyzed ten commercially made carbon nanotubes to identify the chemical byproducts of the manufacturing process and to help track them in the environment.

Plata found that the ten different carbon nanotubes had vastly different compositions; most previous toxicity studies have generally assumed that all nanotubes are the same. This diversity of chemical signatures will make it harder to trace the impacts of carbon nanotubes in the environment

In previous work (first presented last fall), Plata and colleagues found that the process of nanotube manufacturing produced emissions of at least 15 aromatic hydrocarbons, including four different kinds of toxic polycyclic aromatic hydrocarbons (PAHs) similar to those found in cigarette smoke and automobile tailpipe emissions. They also found that the process was largely inefficient: much of the raw carbon went unconsumed and was vented into the atmosphere.

The new research by Plata et al was published April 3 on the web site of the journal Nanotechnology. In the next phase of Plata's work, she will collect real-time data from a European nanotube manufacturing facility that is poised to let her set up the same monitors she used in the MIT lab.

"It is the indiscriminant use of poorly understood chemicals that causes environmental and public health costs," Plata said. "We want to work proactively with the carbon nanotube industry to avoid repeating environmental mistakes of the past. Instead of reacting to problems, we hope to preclude them altogether."

Plata was honored in February for her nanotube work by the Division of Environmental Chemistry of the American Chemical Society, which selected her as a winner of one of its 2008 Graduate Student Paper Awards.

Related Links

Making Nanotubes Without Harming the Environment
www.whoi.edu/oceanus/viewArticle.do?id=39147

Protecting Public Healthy By Preventing Pollution
www.whoi.edu/oceanus/viewArticle.do?id=39148

Industrially synthesized single-walled carbon nanotubes: compositional data for users, environmental risk assessments, and source apportionment
www.iop.org/EJ/abstract/0957-4484/19/18/185706

Helping the Carbon Nanotube Industry Avoid Mega-Mistakes of the Past
www.eurekalert.org/pub_releases/2007-08/acs-htc081007.php

Who is Phil Gschwend?
cee.mit.edu/index.pl?id=2315

Who is Chris Reddy?
www.whoi.edu/hpb/viewPage.do?id=3656&cl=3

####

For more information, please click here

Contacts:
Erin Koenig
Media Relations Coordinator
Woods Hole Oceanographic Institution
508-289-2270

Media Relations Office
508-289-3340

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Ultra-flat circuits will have unique properties: Rice University lab studies 2-D hybrids to see how they differ from common electronics July 25th, 2016

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Nanotubes/Buckyballs/Fullerenes

Easier, faster, cheaper: A full-filling approach to making nanotubes of consistent quality: Approach opens a straightforward route for engineering the properties of single-wall carbon nanotubes July 19th, 2016

Sensing trouble: A new way to detect hidden damage in bridges, roads: University of Delaware engineers devise new method for monitoring structural health July 8th, 2016

Wireless, wearable toxic-gas detector: Inexpensive sensors could be worn by soldiers to detect hazardous chemical agents July 4th, 2016

Nanotubes' 'stuffing' as is: A scientist from the Lomonosov Moscow State University studied the types of carbon nanotubes' 'stuffing' June 2nd, 2016

Discoveries

Attosecond physics: Mapping electromagnetic waveforms July 25th, 2016

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

Announcements

Borrowing from pastry chefs, engineers create nanolayered composites: Method to stack hundreds of nanoscale layers could open new vistas in materials science July 25th, 2016

Integration of novel materials with silicon chips makes new 'smart' devices possible July 25th, 2016

Accurate design of large icosahedral protein nanocages pushes bioengineering boundaries: Scientists used computational methods to build ten large, two-component, co-assembling icosahedral protein complexes the size of small virus coats July 25th, 2016

XEI Scientific Partners with Electron Microscopy Sciences to Promote and Sell its Products in North and South America July 25th, 2016

Environment

A 'smart dress' for oil-degrading bacteria July 24th, 2016

News from Quorum: The College of New Jersey use the Quorum Cryo-SEM preparation system in a project to study ice crystals in high altitude clouds July 19th, 2016

Researchers improve catalyst efficiency for clean industries: Method reduces use of expensive platinum July 8th, 2016

Electronic nose smells pesticides and nerve gas July 6th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic