Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Pacific Researchers make breakthrough with Anti-Cancer Drug Model

Abstract:
Researchers at University of the Pacific have designed a model for an anti-cancer drug that could lead to safer, more effective cancer treatment and drug development. The proposed drug is derived from enediynes - natural substances produced by microorganisms found in soils in Texas and Argentina during the 80's. With slight but crucial modifications, the enediynes can be "trained" to attack only cancerous tumors, leaving the surrounding healthy tissue alone and greatly increasing the survival rate of cancer treatment.

Pacific Researchers make breakthrough with Anti-Cancer Drug Model

Stockton, CA | Posted on April 5th, 2008

Enediynes are masterpieces of natural ingenuity and share a common mechanism, namely to cut like scissors through the DNA of a cell, said Professor Elfi Kraka, former chair of Pacific's Chemistry Department.

"Microorganisms have had two billion years more experience than humans have in figuring out how to fight toxic bacteria and viruses," Kraka said. "In this time, they have developed compounds such as enediynes. Now we have to learn how to adjust nature's design to our needs."

Kraka and Professor Dieter Cremer, director of nanotechnology at Pacific, conducted the research with the assistance of a team of graduate students from all over the world.

Their research was published on March 6 in the American Chemical Society's The Journal of Physical Chemistry B and is recognized by the organization as a potentially major breakthrough in cancer research. The article, "Design of a New Warhead for the Natural Enediyne Dynemicin A.: An Increase of Biological Activity," may be found on the Web at dx.doi.org/10.1021/jp0773536.

In their report, the researchers describe using enediynes to develop an anti-cancer "warhead" that targets the acidic signature of tumor cells. Unfortunately, naturally occurring enediynes that are currently used in cancer treatment are as destructive to healthy tissues as tumor cells and therefore lead to undesirable side effects.

The Pacific researchers learned through computer-assisted drug design that by combining enediynes with amidines, compounds also found in nature, they can create a warhead that only is activated in acidic environments. Contrary to healthy cells, cancer cells generate an acidic environment. Therefore the warheads will only attack the DNA strands of the cancer cells, thus destroying them.

"Often cancer patients suffer severely from cancer treatments based on chemotherapy," Kraka said. "This new drug model has a lot of potential and could lead to a new efficient anti-cancer drug with highly reduced side effects."

Kraka and Cremer conducted the essential steps of their research after joining Pacific. Their research interests include theoretical and computational chemistry, nanotechnology, and computer assisted drug design. They are currently looking for a pharmaceutical company that would be interested in trying to develop their new drug model and help them test it.

"The breakthrough that Professor Kraka and her team have made could have a tremendous impact on the treatment of one of the most significant diseases of our times," Provost Phil Gilbertson said. "There are very few homes that would not be affected by this potentially groundbreaking drug model as families across the country and throughout the world can claim a relative who has suffered from this terrible disease."

####

About University of the Pacific
Pacific is a one of west's most distinctive, student-centered national universities. We are a private university with about 6,700 students on three campuses in Northern California. We offer undergraduate, graduate, and professional degree programs in nine colleges. Compared to most schools our size, we offer a broader array of courses. We are one of a few smaller schools ranked highly as a "best value" by U.S. News and World Report.

For more information, please click here

Contacts:
University of the Pacific
3601 Pacific Avenue
Stockton, California 95211
phone: 209.946.2285

Copyright © University of the Pacific

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Manchester scientists tie the tightest knot ever achieved January 13th, 2017

Nanomedicine

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Keystone Nano Announces FDA Approval Of Investigational New Drug Application For Ceramide NanoLiposome For The Improved Treatment Of Cancer January 10th, 2017

Captured on video: DNA nanotubes build a bridge between 2 molecular posts: Research may lead to new lines of direct communication with cells January 9th, 2017

Arrowhead Provides Response to New Minority Shareholder Announcement January 7th, 2017

Discoveries

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

Announcements

Nanoscale view of energy storage January 16th, 2017

Seeing the quantum future... literally: What if big data could help you see the future and prevent your mobile phone from breaking before it happened? January 16th, 2017

NUS researchers achieve major breakthrough in flexible electronics: New classes of printable electrically conducting polymer materials make better electrodes for plastic electronics and advanced semiconductor devices January 14th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project