Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Computational Quantum Chemical Methods Promising for Drug Development

Abstract:
Many chiral molecules are important for medical treatment for illnesses ranging from acid-reflux to cancer. The research goal is to provide organic chemists with computational tools to determine the handedness of a particular molecule, which could speed up the drug development process by years.

Computational Quantum Chemical Methods Promising for Drug Development

Blacksburg, VA | Posted on April 5th, 2008

Research, led by a Virginia Tech chemist, may someday help natural-products chemists decrease by years the time it takes to develop certain types of medicinal drugs. The research by T. Daniel Crawford, associate professor of chemistry, involves computations of optical rotation angles on chiral—non-superimposable—molecules

Many chiral molecules are important for medical treatment for illnesses ranging from acid-reflux to cancer. The term "chiral" means that two mirror images of a molecule cannot be superimposed onto each other. In other words, some are "left-handed" and some are "right-handed."

"Most drugs have this handedness property," Crawford said, "and for many of these drugs, even though both hands can cause a reaction, it is a situation where one hand does a good thing and one does a bad thing." He used thalidomide as an example. A mixture of both hands of the drug was used in the late 1950s and early 1960s to treat morning sickness in pregnant women. Later studies revealed that, while one of the two hands acted as the desired sedative, the other hand was found to cause significant birth defects. Thalidomide was never approved by the FDA in the United States and was eventually taken off the market in Europe.

For chemists, therefore, it is often vital to determine which hand of a molecule they are using. In other words, when you have a sample of a chiral molecule, how do you distinguish between the left and right hand?

This is where a technique called polarimetry comes in to play. By shooting plane-polarized light through a sample of one hand, the chiral molecule in question will rotate to a characteristic angle either clockwise or counterclockwise, and the two hands of a chiral molecule produce opposite rotations.

"So if we figure out the direction and rotation of the light or each hand, we have a frame of reference for determining whether we have the left or right hand of a molecule," Crawford said.

The problem with this method is that synthesizing the two hands of chiral molecules is often extremely time consuming. "It can take anywhere from weeks to years," Crawford said.

Crawford's research applies the theory of quantum mechanics to devise computational methods in order to eliminate having to create a synthetic molecule. "The hope is that this will allow us to calculate things like optical rotation very accurately," he said. "So when an organic chemist has a molecule and doesn't know if it is left- or right-handed, we can calculate that directly on the computer."

Crawford said the ultimate goal in his research is to be able to provide organic chemists with computational tools to determine the handedness of a particular molecule they are working with. He said that such tools could speed up the drug development process by years.

The research titled, The Current State of ‘Ab Initio' Calculations of Optical Rotation and Electronic Circular Dichcoism Spectra, by Crawford and Mary C. Tam of Virginia Tech and Mica Abrams of the University of Central Arkansas, appeared as the cover article in the November 2007 Journal of Physical Chemistry A. Get the complete article at:
pubs.acs.org/cgi-bin/article.cgi/jpcafh/2007/111/i48/html/jp075046u.html

####

About Virginia Tech (Virginia Polytechnic Institute and State University)
The College of Science at Virginia Tech gives students a comprehensive foundation in the scientific method. Outstanding faculty members teach courses and conduct research in biology, chemistry, economics, geosciences, mathematics, physics, psychology, and statistics. The college is dedicated to fostering a research intensive environment and offers programs in many cutting edge areas, including those in nanotechnology, biological sciences, information theory and science, and supports the university’s research initiatives through the Institute for Critical Technologies and Applied Sciences, and the Institute for Biomedical and Public Health Sciences. The College of Science also houses programs in intellectual property law and pre-medicine.

For more information, please click here

Contacts:
Catherine Doss
(540) 231-5035

Copyright © Newswise

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Nanomedicine

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

'Electronic skin' could improve early breast cancer detection October 29th, 2014

Tiny carbon nanotube pores make big impact October 29th, 2014

Discoveries

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Announcements

First Observation of Electronic Structure in Ag-Rh Alloy Nanoparticles Having Hydrogen Absorbing: Storage Property –Attempting to solve the mystery of why Ag-Rh alloy nanoparticles have a similar property to Pd– October 30th, 2014

Iranians Present Model to Predict Photocatalytic Process in Removal of Pollutants October 30th, 2014

Production of Biocompatible Polymers in Iran October 30th, 2014

Amorphous Coordination Polymer Particles as alternative to classical nanoplatforms for nanomedicine October 30th, 2014

Quantum nanoscience

NIST quantum probe enhances electric field measurements October 8th, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Rice launches Center for Quantum Materials: RCQM will immerse global visitors in cross-disciplinary research September 30th, 2014

Big Results Require Big Ambitions: Three young UCSB faculty receive CAREER awards from the National Science Foundation September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE