Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > IGERT Profile: Tania Chan

Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU
Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU

Abstract:
Tania Chan is a first year PhD student in materials science at Johns Hopkins University and member of the NanoBio IGERT with the Institute for NanoBioTechnology. IGERT stands for Integrative Graduate Education and Research Traineeship and is funded by the National Science Foundation.

IGERT Profile: Tania Chan

Baltimore, MD | Posted on April 4th, 2008

Working with Michael (Seungju) Yu, associate professor of materials science and engineering and INBT affiliated faculty member, Chan has synthesized a protein, called QK, which mimics VEGF, the natural growth factor responsible for new blood vessel growth. The QK will be paired with a synthetic peptide that mimics natural collagen—a protein found in connective tissues, bone, muscle and skin. This synthetic combination will be used to modify collagen scaffolds with the long term goal of controlling microvasculature formation in artificial tissue and wound healing.

Born in Hong Kong, Chan spent most of her childhood in Southern California. She graduated from the Massachusetts Institute of Technology in June 2007 with a B.S. in materials science and a minor in biomedical engineering. Chan is especially interested in biomaterials. "It's fascinating to me how we can make materials and put them into the human body to help a person heal and to regenerate tissue," Chan says.

Chan enjoys research. As a sophomore, she worked in MIT's bioengineering department, studying DNA mutation in yeast cells and its effects in colony formation and other project on DNA mutation in mice and its effects on colon tumors formation. As a junior, Chan worked at Harvard on a project on semiconductor nano-patterning, as well as separate project at MIT that examined different collagen scaffold processing techniques. Chan interned with Schlumberger, an oil field services company, and helped develop a swellable elastomer, now patent pending. After one semester as a visiting scholar at Oxford, she returned for her final semester to "work on developing a polymeric vaccine delivery vehicle," she adds. Chan presented her results at the Fall 2007 Materials Research Society meeting.

INBT's NanoBio IGERT has afforded Chan the opportunity to indulge what she calls her "endless pursuit of knowledge." When not in the lab, Chan loves to play and listen to music and is a classically trained pianist and singer.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:


* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

Academic/Education

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Malvern technology delivers Malvern reliability in multi-disciplinary lab at Queen Mary University London September 9th, 2014

State University of New York Trustees Unanimously Approve SUNY Polytechnic Institute (SUNY Poly) as New Name for Merged SUNY CNSE / SUNYIT September 9th, 2014

New Vice President Takes Helm at CNSE CMOST: Catherine Gilbert To Lead CNSE Children’s Museum of Science and Technology Through Expansion And Relocation August 29th, 2014

Nanomedicine

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Engineered proteins stick like glue — even in water: New adhesives based on mussel proteins could be useful for naval or medical applications September 22nd, 2014

New chip promising for tumor-targeting research September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals

Los Alamos Researchers Uncover New Properties in Nanocomposite Oxide Ceramics for Reactor Fuel, Fast-Ion Conductors: Misfit dislocations are key to transport properties across material interfaces September 23rd, 2014

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

Twisted graphene chills out: When two sheets of graphene are stacked in a special way, it is possible to cool down the graphene with a laser instead of heating it up, University of Manchester researchers have shown September 22nd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Nanobiotechnology

Production of Organometallic Frameworks in Least Possible Time September 23rd, 2014

New star-shaped molecule breakthrough: Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created September 22nd, 2014

Arrowhead to Present at BioCentury's NewsMakers in the Biotech Industry Conference September 19th, 2014

CiQUS researchers design an artificial nose to detect DNA differentiation with single nucleotide resolution September 18th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE