Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > IGERT Profile: Tania Chan

Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU
Tania Chan. Graduate student in the NanoBio IGERT program. Credit: Mary Spiro / JHU

Abstract:
Tania Chan is a first year PhD student in materials science at Johns Hopkins University and member of the NanoBio IGERT with the Institute for NanoBioTechnology. IGERT stands for Integrative Graduate Education and Research Traineeship and is funded by the National Science Foundation.

IGERT Profile: Tania Chan

Baltimore, MD | Posted on April 4th, 2008

Working with Michael (Seungju) Yu, associate professor of materials science and engineering and INBT affiliated faculty member, Chan has synthesized a protein, called QK, which mimics VEGF, the natural growth factor responsible for new blood vessel growth. The QK will be paired with a synthetic peptide that mimics natural collagen—a protein found in connective tissues, bone, muscle and skin. This synthetic combination will be used to modify collagen scaffolds with the long term goal of controlling microvasculature formation in artificial tissue and wound healing.

Born in Hong Kong, Chan spent most of her childhood in Southern California. She graduated from the Massachusetts Institute of Technology in June 2007 with a B.S. in materials science and a minor in biomedical engineering. Chan is especially interested in biomaterials. "It's fascinating to me how we can make materials and put them into the human body to help a person heal and to regenerate tissue," Chan says.

Chan enjoys research. As a sophomore, she worked in MIT's bioengineering department, studying DNA mutation in yeast cells and its effects in colony formation and other project on DNA mutation in mice and its effects on colon tumors formation. As a junior, Chan worked at Harvard on a project on semiconductor nano-patterning, as well as separate project at MIT that examined different collagen scaffold processing techniques. Chan interned with Schlumberger, an oil field services company, and helped develop a swellable elastomer, now patent pending. After one semester as a visiting scholar at Oxford, she returned for her final semester to "work on developing a polymeric vaccine delivery vehicle," she adds. Chan presented her results at the Fall 2007 Materials Research Society meeting.

INBT's NanoBio IGERT has afforded Chan the opportunity to indulge what she calls her "endless pursuit of knowledge." When not in the lab, Chan loves to play and listen to music and is a classically trained pianist and singer.

####

About Institute for NanoBioTechnology
The Institute for NanoBioTechnology at Johns Hopkins University is revolutionizing health care by bringing together internationally renowned expertise in medicine, engineering, the sciences, and public health to create new knowledge and groundbreaking technologies.

INBT programs in research, education, outreach, and technology transfer are designed to foster the next wave of nanobiotechnology innovation.

Approximately 155 faculty are affiliated with INBT and are also members of the following Johns Hopkins institutions: Krieger School of Arts and Sciences, Whiting School of Engineering, School of Medicine, Bloomberg School of Public Health, and Applied Physics Laboratory.

For more information, please click here

Contacts:


* Institute for NanoBioTechnology
214 Maryland Hall
3400 North Charles Street
Baltimore, MD 21218

* Email:
* Phone: (410) 516-3423
* Fax: (410) 516-2355

Copyright © Institute for NanoBioTechnology

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Academic/Education

Oxford Nanoimaging report on how the Nanoimager, a desktop microscope delivering single molecule, super-resolution performance, is being applied at the MRC Centre for Molecular Bacteriology & Infection November 22nd, 2016

The University of Applied Sciences in Upper Austria uses Deben tensile stages as an integral part of their computed tomography research and testing facility October 18th, 2016

Enterprise In Space Partners with Sketchfab and 3D Hubs for NewSpace Education October 13th, 2016

New Agricultural Research Center Debuts at UCF October 12th, 2016

Nanomedicine

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

New active filaments mimic biology to transport nano-cargo: A new design for a fully biocompatible motility engine transports colloidal particles faster than diffusion with active filaments January 11th, 2017

Interviews/Book Reviews/Essays/Reports/Podcasts/Journals/White papers

Traffic jam in empty space: New success for Konstanz physicists in studying the quantum vacuum January 22nd, 2017

A big nano boost for solar cells: Kyoto University and Osaka Gas effort doubles current efficiencies January 21st, 2017

Explaining how 2-D materials break at the atomic level January 20th, 2017

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Nanobiotechnology

New research helps to meet the challenges of nanotechnology: Research helps to make the most of nanoscale catalytic effects for nanotechnology January 20th, 2017

Chemists Cook up New Nanomaterial and Imaging Method: Nanomaterials can store all kinds of things, including energy, drugs and other cargo January 19th, 2017

'5-D protein fingerprinting' could give insights into Alzheimer's, Parkinson's January 19th, 2017

Nanoscale Modifications can be used to Engineer Electrical Contacts for Nanodevices January 13th, 2017

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project