Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

Abstract:
A consortium of researchers that includes New York University Physics Professor Andrew Kent has received a $6.25 million nanotechnology grant from the U.S. Department of Defense to design and develop nano-magnetic materials and devices, including more efficient computers and cell phones.

NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

New York, NY | Posted on April 2nd, 2008

The consortium, led by the University of Iowa, will develop a fundamental understanding of materials and establish the engineering expertise needed to exploit hybrid structures by incorporating magnetic metals, semiconductors, and plastics for future devices, according to consortium leader Michael Flatté, a professor in the University of Iowa's Department of Physics and Astronomy.

The consortium also includes Yuri Suzuki of the University of California, Berkeley; Giovanni Vignale of the University of Missouri at Columbia; and Jeremy Levy of the University of Pittsburgh.

The researchers say their work may lead to considerably more compact devices that operate for far longer between battery recharges. These include laptop computers, cell phones, and unmanned sensors. They add that because the processing costs for these materials are much less than those of traditional semiconductor chips, these new devices should also be inexpensive to produce.

A goal of the research is to understand how magnetism can be manipulated and modified in hybrid structures of different materials in response to electric fields and optical illumination. The magnetic coupling between these materials may occur via magnetic fields, or through the exchange or flow of electron "spin," the fundamental property of electrons that gives rise to magnetism in materials.

Targeted device concepts include seamless integration of memory and logic, high-speed magneto-optical modulators for optical communications and switching, reconfigurable logic devices, and new sensing capabilities. The use of electron-spin-mediated coupling is expected to permit the design of devices that operate at much higher speeds than current electronic devices and at the same time use considerably less power.

In 2007, the U.S. Department of Defense awarded a team of nine scholars from six universities—including Kent and Nadrian Seeman from NYU's Chemistry Department—a grant of $6 million over five years to exploit precise biological assembly techniques for the study of quantum physics in nanoparticle arrays. This research will produce a fundamental understanding of quantum electronic systems, which could have an impact on the development and understanding of future electronics.

Kent and his research team at NYU have recently developed a new form of non-volatile memory known as magnetoresistive random access memory, or MRAM, which will provide non-volatile storage of frequently updated, critical data, and instant-on convenience—that is, enable computers and other electronic devices to turn on in the blink of an eye. NYU's MRAM technology may provide a more efficient and reliable type of non-volatile storage, which is computer memory retained even when a device is turned off, such as in USB flash drives, magnetic computer storage devices, and smart cards.

The technology is being commercialized by a new start-up company formed by Allied Minds, a Boston-based seed investment corporation. The new company, Spin Transfer Technologies (STT), LLC, was announced in December 2007.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physics

New quantum phenomena in graphene superlattices September 18th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Heating quantum matter: A novel view on topology: Physicists demonstrate how heating up a quantum system can be used as a universal probe for exotic states of matter August 22nd, 2017

Sensing technology takes a quantum leap with RIT photonics research: Office of Naval Research funds levitated optomechanics project August 10th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Memory Technology

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Bit data goes anti-skyrmions September 1st, 2017

Optical computing/Photonic computing

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

A new approach to ultrafast light pulses: Unusual fluorescent materials could be used for rapid light-based communications systems September 19th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Announcements

Quantum twisted Loong confirms the physical reality of wavefunctions September 23rd, 2017

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Military

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

Freeze-dried foam soaks up carbon dioxide: Rice University scientists lead effort to make novel 3-D material August 16th, 2017

2-faced 2-D material is a first at Rice: Rice University materials scientists create flat sandwich of sulfur, molybdenum and selenium August 14th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Magnetic cellular 'Legos' for the regenerative medicine of the future September 12th, 2017

Quantum detectives in the hunt for the world's first quantum computer September 8th, 2017

New results reveal high tunability of 2-D material: Berkeley Lab-led team also provides most precise band gap measurement yet for hotly studied monolayer moly sulfide August 26th, 2017

A more complete picture of the nano world August 24th, 2017

Alliances/Trade associations/Partnerships/Distributorships

GLOBALFOUNDRIES and Soitec Enter Into Long-term Supply Agreement on FD-SOI Wafers: Strategic milestone to help guarantee a secure, high-volume supply of FD-SOI technology September 20th, 2017

GLOBALFOUNDRIES Unveils Vision and Roadmap for Next-Generation 5G Applications: Technology platforms are uniquely positioned to enable a new era of ‘connected intelligence’ with the transition to 5G September 20th, 2017

Leti and Partners in PiezoMAT Project Develop New Fingerprint Technology for Highly Reliable Security and ID Applications: Ultra-high Resolution Pressure Sensing Uses Matrices of Vertical Piezoelectric Nanowire To Reconstruct the Smallest Features of Human Fingerprints September 5th, 2017

Phenom-World selects Deben to supply a tensile stage as an accessory to their range of desktop SEMs August 29th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project