Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

Abstract:
A consortium of researchers that includes New York University Physics Professor Andrew Kent has received a $6.25 million nanotechnology grant from the U.S. Department of Defense to design and develop nano-magnetic materials and devices, including more efficient computers and cell phones.

NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

New York, NY | Posted on April 2nd, 2008

The consortium, led by the University of Iowa, will develop a fundamental understanding of materials and establish the engineering expertise needed to exploit hybrid structures by incorporating magnetic metals, semiconductors, and plastics for future devices, according to consortium leader Michael Flatté, a professor in the University of Iowa's Department of Physics and Astronomy.

The consortium also includes Yuri Suzuki of the University of California, Berkeley; Giovanni Vignale of the University of Missouri at Columbia; and Jeremy Levy of the University of Pittsburgh.

The researchers say their work may lead to considerably more compact devices that operate for far longer between battery recharges. These include laptop computers, cell phones, and unmanned sensors. They add that because the processing costs for these materials are much less than those of traditional semiconductor chips, these new devices should also be inexpensive to produce.

A goal of the research is to understand how magnetism can be manipulated and modified in hybrid structures of different materials in response to electric fields and optical illumination. The magnetic coupling between these materials may occur via magnetic fields, or through the exchange or flow of electron "spin," the fundamental property of electrons that gives rise to magnetism in materials.

Targeted device concepts include seamless integration of memory and logic, high-speed magneto-optical modulators for optical communications and switching, reconfigurable logic devices, and new sensing capabilities. The use of electron-spin-mediated coupling is expected to permit the design of devices that operate at much higher speeds than current electronic devices and at the same time use considerably less power.

In 2007, the U.S. Department of Defense awarded a team of nine scholars from six universities—including Kent and Nadrian Seeman from NYU's Chemistry Department—a grant of $6 million over five years to exploit precise biological assembly techniques for the study of quantum physics in nanoparticle arrays. This research will produce a fundamental understanding of quantum electronic systems, which could have an impact on the development and understanding of future electronics.

Kent and his research team at NYU have recently developed a new form of non-volatile memory known as magnetoresistive random access memory, or MRAM, which will provide non-volatile storage of frequently updated, critical data, and instant-on convenience—that is, enable computers and other electronic devices to turn on in the blink of an eye. NYU's MRAM technology may provide a more efficient and reliable type of non-volatile storage, which is computer memory retained even when a device is turned off, such as in USB flash drives, magnetic computer storage devices, and smart cards.

The technology is being commercialized by a new start-up company formed by Allied Minds, a Boston-based seed investment corporation. The new company, Spin Transfer Technologies (STT), LLC, was announced in December 2007.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

Physics

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

News and information

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanoshuttle wear and tear: It's the mileage, not the age January 26th, 2015

Visualizing interacting electrons in a molecule: Scientists at Aalto University and the University of Zurich have succeeded in directly imaging how electrons interact within a single molecule January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Memory Technology

Nano - "Green" metal oxides ... January 13th, 2015

Quantum optical hard drive breakthrough January 8th, 2015

Instant-start computers possible with new breakthrough December 19th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Optical computing/ Photonic computing

New signal amplification process set to transform communications, imaging, computing: UC San Diego researchers discover a mechanism to amplify signals in optoelectronic systems that is far more efficient than standard processes January 21st, 2015

Rice's Naomi Halas to direct Smalley Institute: Optics pioneer will lead Rice's multidisciplinary science institute January 15th, 2015

Graphene plasmons go ballistic: Graphene combined with the insulting power of boron nitride enables light control in tiny circuits with dramatically reduced energy loss January 12th, 2015

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Announcements

Nanoparticles Increase Durability of Concrete Decorations in Cold Areas January 26th, 2015

Iranian Researchers Boost Solar Cells Efficiency Using Anti-Aggregates January 26th, 2015

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

Engineering self-assembling amyloid fibers January 26th, 2015

Military

Detection of Heavy Metals in Samples with Naked Eye January 26th, 2015

The latest fashion: Graphene edges can be tailor-made: Rice University theory shows it should be possible to tune material's properties January 24th, 2015

Scientists 'bend' elastic waves with new metamaterials that could have commercial applications: Materials could benefit imaging and military enhancements such as elastic cloaking January 23rd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

Grants/Awards/Scholarships/Gifts/Contests/Honors/Records

OCSiAl supports NanoART Imagery Contest January 23rd, 2015

EnvisioNano: An image contest hosted by the National Nanotechnology Initiative (NNI) January 22nd, 2015

Laser-generated surface structures create extremely water-repellent metals: Super-hydrophobic properties could lead to applications in solar panels, sanitation and as rust-free metals January 20th, 2015

NREL Scientist Brian Gregg Named AAAS Fellow: Gregg honored for distinguished contributions to the field of organic solar photoconversion January 20th, 2015

Alliances/Partnerships/Distributorships

Smart keyboard cleans and powers itself -- and can tell who you are January 21st, 2015

DNA 'glue' could someday be used to build tissues, organs January 14th, 2015

GLOBALFOUNDRIES and Linear Dimensions to Offer Joint Analog Solution For Fast-Growing Wearables and MEMs Sensors Markets January 9th, 2015

Nanowire clothing could keep people warm -- without heating everything else January 7th, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE