Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

Abstract:
A consortium of researchers that includes New York University Physics Professor Andrew Kent has received a $6.25 million nanotechnology grant from the U.S. Department of Defense to design and develop nano-magnetic materials and devices, including more efficient computers and cell phones.

NYU physics part of $6.25 million US Department of Defense grant for nanotechnology research

New York, NY | Posted on April 2nd, 2008

The consortium, led by the University of Iowa, will develop a fundamental understanding of materials and establish the engineering expertise needed to exploit hybrid structures by incorporating magnetic metals, semiconductors, and plastics for future devices, according to consortium leader Michael Flatté, a professor in the University of Iowa's Department of Physics and Astronomy.

The consortium also includes Yuri Suzuki of the University of California, Berkeley; Giovanni Vignale of the University of Missouri at Columbia; and Jeremy Levy of the University of Pittsburgh.

The researchers say their work may lead to considerably more compact devices that operate for far longer between battery recharges. These include laptop computers, cell phones, and unmanned sensors. They add that because the processing costs for these materials are much less than those of traditional semiconductor chips, these new devices should also be inexpensive to produce.

A goal of the research is to understand how magnetism can be manipulated and modified in hybrid structures of different materials in response to electric fields and optical illumination. The magnetic coupling between these materials may occur via magnetic fields, or through the exchange or flow of electron "spin," the fundamental property of electrons that gives rise to magnetism in materials.

Targeted device concepts include seamless integration of memory and logic, high-speed magneto-optical modulators for optical communications and switching, reconfigurable logic devices, and new sensing capabilities. The use of electron-spin-mediated coupling is expected to permit the design of devices that operate at much higher speeds than current electronic devices and at the same time use considerably less power.

In 2007, the U.S. Department of Defense awarded a team of nine scholars from six universities—including Kent and Nadrian Seeman from NYU's Chemistry Department—a grant of $6 million over five years to exploit precise biological assembly techniques for the study of quantum physics in nanoparticle arrays. This research will produce a fundamental understanding of quantum electronic systems, which could have an impact on the development and understanding of future electronics.

Kent and his research team at NYU have recently developed a new form of non-volatile memory known as magnetoresistive random access memory, or MRAM, which will provide non-volatile storage of frequently updated, critical data, and instant-on convenience—that is, enable computers and other electronic devices to turn on in the blink of an eye. NYU's MRAM technology may provide a more efficient and reliable type of non-volatile storage, which is computer memory retained even when a device is turned off, such as in USB flash drives, magnetic computer storage devices, and smart cards.

The technology is being commercialized by a new start-up company formed by Allied Minds, a Boston-based seed investment corporation. The new company, Spin Transfer Technologies (STT), LLC, was announced in December 2007.

####

For more information, please click here

Contacts:
James Devitt

212-998-6808

Copyright © New York University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Physics

Inorganic-organic halide perovskites for new photovoltaic technology November 6th, 2017

Halas wins American Physical Society's Lilienfeld Prize: Rice University nanoscientist honored for pioneering research in plasmonics October 23rd, 2017

A step closer to understanding quantum mechanics: Swansea University’s physicists develop a new quantum simulation protocol October 22nd, 2017

'Find the Lady' in the quantum world: International team of researchers presents method for quantum-mechanical swapping of positions October 18th, 2017

Govt.-Legislation/Regulation/Funding/Policy

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Memory Technology

Injecting electrons jolts 2-D structure into new atomic pattern: Berkeley Lab study is first to show potential of energy-efficient next-gen electronic memory October 13th, 2017

First on-chip nanoscale optical quantum memory developed: Smallest-yet optical quantum memory device is a storage medium for optical quantum networks with the potential to be scaled up for commercial use September 11th, 2017

High-speed quantum memory for photons September 9th, 2017

Fast magnetic writing of data September 7th, 2017

Optical computing/Photonic computing

Practical superconducting nanowire single photon detector with record detection efficiency over 90 percent November 9th, 2017

Metal-silicone microstructures could enable new flexible optical and electrical devices: Laser-based method creates force-sensitive, flexible microstructures that conduct electricity November 1st, 2017

Researchers bring optical communication onto silicon chips: Ultrathin films of a semiconductor that emits and detects light can be stacked on top of silicon wafers October 23rd, 2017

Novel 'converter' heralds breakthrough in ultra-fast data processing at nanoscale: Invention bagged four patents and could potentially make microprocessor chips work 1,000 times faster October 20th, 2017

Announcements

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

The stacked color sensor: True colors meet minimization November 16th, 2017

Nanometrics to Participate in the 6th Annual NYC Investor Summit 2017 November 16th, 2017

Military

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Promising sensors for submarines, mines and spacecraft: MSU scientists are developing nanostructured gas sensors that would work at room temperature November 10th, 2017

Leti Joins DARPA-Funded Project to Develop Implantable Device for Restoring Vision November 9th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Grants/Sponsored Research/Awards/Scholarships/Gifts/Contests/Honors/Records

Math gets real in strong, lightweight structures: Rice University researchers use 3-D printers to turn century-old theory into complex schwarzites November 16th, 2017

Oxford Instruments announces winner of the 2017 Sir Martin Wood Prize for Japan November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

Alliances/Trade associations/Partnerships/Distributorships

EC Project Aims at Creating and Commercializing Cyber-Physical-System Solutions November 14th, 2017

GLOBALFOUNDRIES, Fudan Team to Deliver Next Generation Dual Interface Smart Card November 14th, 2017

Leti Coordinating Project to Develop Innovative Drivetrains for 3rd-generation Electric Vehicles: CEA Tech’s Contribution Includes Liten’s Knowhow in Magnetic Materials and Simulation And Leti’s Expertise in Wide-bandgap Semiconductors October 20th, 2017

More 22 of 59,885 Print all In new window Leti to Present Update of CoolCube/3DVLSI Technologies Development at 2017 IEEE S3S: Future Developments and Tape-Out Vehicles to Be Presented during Oct. 17 Workshop October 12th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project