Home > News > Hypercubes Could Be Building Blocks of Nanocomputers
April 2nd, 2008
Hypercubes Could Be Building Blocks of Nanocomputers
Abstract:
Multi-dimensional structures called hypercubes may act as the building blocks for tomorrow's nanocomputers - machines made of such tiny elements that they are dominated not by forces that we're familiar with every day, but by quantum properties.
As Samuel Lee and Loyd Hook from the University of Oklahoma explain, microelectronic devices are continually getting smaller and faster, in accordance with Moore's Law. Already, integrated circuits and transistors are reaching the nanometer scale, although they still operate based on the physical properties on the macro-scale. True nanoelectronics, the researchers explain, are not just scaled down microelectronics, but devices that will be dominated by quantum properties, and will therefore require new architectures and novel structures.
"Compared to today's microcomputers, the main advantages of future nanocomputers are higher circuit density, lower power consumption, faster computation speed and more parallel and distributed computing capabilities," Lee told PhysOrg.com.
Source:
physorg.com
Related News Press |
News and information
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Chip Technology
Manufacturing advances bring material back in vogue January 20th, 2023
Vertical electrochemical transistor pushes wearable electronics forward: Biomedical sensing is one application of efficient, low-cost transistors January 20th, 2023
Approaching the terahertz regime: Room temperature quantum magnets switch states trillions of times per second January 20th, 2023
Nanoelectronics
Key element for a scalable quantum computer: Physicists from Forschungszentrum Jülich and RWTH Aachen University demonstrate electron transport on a quantum chip September 23rd, 2022
Reduced power consumption in semiconductor devices September 23rd, 2022
Atomic level deposition to extend Moore’s law and beyond July 15th, 2022
Controlled synthesis of crystal flakes paves path for advanced future electronics June 17th, 2022
Discoveries
Stability of perovskite solar cells reaches next milestone January 27th, 2023
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Temperature-sensing building material changes color to save energy January 27th, 2023
Announcements
Temperature-sensing building material changes color to save energy January 27th, 2023
Quantum nanoscience
Qubits on strong stimulants: Researchers find ways to improve the storage time of quantum information in a spin rich material January 27th, 2023
Danish quantum physicists make nanoscopic advance of colossal significance January 27th, 2023
![]() |
||
![]() |
||
The latest news from around the world, FREE | ||
![]() |
![]() |
||
Premium Products | ||
![]() |
||
Only the news you want to read!
Learn More |
||
![]() |
||
Full-service, expert consulting
Learn More |
||
![]() |