Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.
An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.

Abstract:
—Achieving approximately 4.8 times*1 higher oxygen reduction
current per unit area compared to that of platinum—

Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

Tokyo, Japan | Posted on April 2nd, 2008

Hitachi Maxell, Ltd. (TSE: 6810) has announced development of a new catalyst used for oxygen-reduction reactions at the cathode of a polymer electrolyte fuel cell (PEFC). The new catalyst is gold-platinum (AuPt) nano-particle 2 to 3 nm in size and can generate approximately 4.8 times the oxygen-reduction current per unit area than commercial platinum catalysts.

PEFCs are a promising clean-energy source for automobiles, homes, and mobile devices. Platinum is commonly used as the catalyst for the oxygen-reduction reaction in PEFCs, but platinum is an extremely expensive precious metal, so reducing material cost for PEFCs by minimizing the amount of platinum used, while improving its catalytic effect is an important R&D topic.

Increasing the surface area of the catalyst by reducing particle size is an effective way of improving catalytic activity. It has also been reported that the addition of base metals such as iron, cobalt and nickel to platinum also improves the oxygen-reduction reaction rate, but these kinds of base metals dissolve easily in the acidic environment of a PEFC where the catalyst is working, which is a problem.

Maxell has developed a new catalyst for oxygen-reduction reactions in PEFCs. The new catalyst is a composition of platinum and gold and is resistant to acidic environments. It was difficult to synthesize gold particles smaller than 5 nm due to its relatively low melting point, but by applying a proprietary nano-level particle synthesizing technology, Maxell has succeeded in developing a high-activity structure in which the gold and platinum are not fully alloyed for the new catalyst. Using citric acid as a reducing agent, AuPt catalyst particles 2 to 3 nm in size were synthesized at 373 K. Compared with platinum catalysts, this new AuPt catalyst achieves approximately 4.8 times higher oxygen-reduction current per unit area. X-ray diffraction analysis revealed that the gold and platinum are not fully alloyed and it is supposed that this structure results in the improved the oxygen-reduction reaction activity.

This success represents a large step closer to fuel cells that are practical for applications requiring large current, such as automobiles and homes.

Maxell presented this new technology for synthesizing a highly-active AuPt catalyst at the 101st catalysis conference held March 29 at the Tower Hall Funabori in Tokyo.

Maxell will continue nano-technology research and development towards practical applications in polymer-electrolyte and direct-methanol fuel cells.

####

About Hitachi Maxell, Ltd.
Since its foundation in 1960, Hitachi Maxell, Ltd. (TSE: 6810) has led the electronics industry at home and abroad in the fields of memory and mobility. Maxell is a leading manufacturer of information storage media products including magnetic tapes, optical disks, and battery products including lithium ion rechargeable batteries, micro batteries and dry cell batteries. For more information on Maxell, please visit the Company's web site at www.maxell.com .

For more information, please click here

Contacts:
Hitachi Maxell
Corporate Communications
Tel: +81-3-3515-8211

Copyright © Hitachi Maxell, Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Announcements

Information storage with a nanoscale twist: Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives March 28th, 2017

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Leti and HORIBA Scientific to Host Webinar on Ultrafast Characterization Tool: Plasma Profiling Time-of-Flight Mass Spectrometer Tool Cuts Optimization Time In Layer Deposition and Fabrication of Wide Range of Applications March 27th, 2017

Laser activated gold pyramids could deliver drugs, DNA into cells without harm: Microstructures create temporary pores in cells March 27th, 2017

Energy

Argon is not the 'dope' for metallic hydrogen March 24th, 2017

Rice U. refines filters for greener natural gas: New study defines best materials for carbon capture, methane selectivity March 23rd, 2017

Artificial photosynthesis steps into the light: Rice University lab turns transition metals into practical catalyst for solar, other applications March 23rd, 2017

Researchers develop groundbreaking process for creating ultra-selective separation membranes: Discovery could greatly improve energy-efficiency of separation and purification processes in the chemical and petrochemical industries March 15th, 2017

Automotive/Transportation

ATTOPSEMI Technology Joins FDXcelerator Program to Deliver Advanced Non-Volatile Memory IP to GLOBALFOUNDRIES 22 FDX® Technology Platform: Leading-edge I-fuse™ brings higher reliability, smaller cell size and ease of programmability for consumer, automotive, and IoT applications March 27th, 2017

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

CRMGroup in Belgium uses a Deben three point bending stage in the development of new steel & coated steel products for automotive and other industrial applications March 21st, 2017

New nanofiber marks important step in next generation battery development March 14th, 2017

Fuel Cells

Promising results obtained with a new electrocatalyst that reduces the need for platinum: Researchers from Aalto University have succeeded in manufacturing electrocatalysts used for storing electric energy with one-hundredth of the amount of platinum that is usually needed March 24th, 2017

Scientists boost catalytic activity for key chemical reaction in fuel cells: New platinum-based catalysts with tensile surface strain could improve fuel cell efficiency December 19th, 2016

It's basic: Alternative fuel cell technology reduces cost: Study sets performance targets for metal-free fuel cell membrane December 13th, 2016

Keeping electric car design on the right road: A closer look at the life-cycle impacts of lithium-ion batteries and proton exchange membrane fuel cells December 9th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project