Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.
An electron microscope photograph of a gold-platinum (AuPt) catalyst deposited on a conductive carbon support. The dark grey or black areas are the gold-platinum catalysts, and the light grey areas are the carbon support. The gold-platinum catalyst particles are 2 to 3 nanometer in size.

Abstract:
—Achieving approximately 4.8 times*1 higher oxygen reduction
current per unit area compared to that of platinum—

Hitachi Maxell Develops New Highly-Active Catalyst for Higher Performance Fuel Cells; Achieves 4.8x More Oxygen-Reduction Current than Platinum

Tokyo, Japan | Posted on April 2nd, 2008

Hitachi Maxell, Ltd. (TSE: 6810) has announced development of a new catalyst used for oxygen-reduction reactions at the cathode of a polymer electrolyte fuel cell (PEFC). The new catalyst is gold-platinum (AuPt) nano-particle 2 to 3 nm in size and can generate approximately 4.8 times the oxygen-reduction current per unit area than commercial platinum catalysts.

PEFCs are a promising clean-energy source for automobiles, homes, and mobile devices. Platinum is commonly used as the catalyst for the oxygen-reduction reaction in PEFCs, but platinum is an extremely expensive precious metal, so reducing material cost for PEFCs by minimizing the amount of platinum used, while improving its catalytic effect is an important R&D topic.

Increasing the surface area of the catalyst by reducing particle size is an effective way of improving catalytic activity. It has also been reported that the addition of base metals such as iron, cobalt and nickel to platinum also improves the oxygen-reduction reaction rate, but these kinds of base metals dissolve easily in the acidic environment of a PEFC where the catalyst is working, which is a problem.

Maxell has developed a new catalyst for oxygen-reduction reactions in PEFCs. The new catalyst is a composition of platinum and gold and is resistant to acidic environments. It was difficult to synthesize gold particles smaller than 5 nm due to its relatively low melting point, but by applying a proprietary nano-level particle synthesizing technology, Maxell has succeeded in developing a high-activity structure in which the gold and platinum are not fully alloyed for the new catalyst. Using citric acid as a reducing agent, AuPt catalyst particles 2 to 3 nm in size were synthesized at 373 K. Compared with platinum catalysts, this new AuPt catalyst achieves approximately 4.8 times higher oxygen-reduction current per unit area. X-ray diffraction analysis revealed that the gold and platinum are not fully alloyed and it is supposed that this structure results in the improved the oxygen-reduction reaction activity.

This success represents a large step closer to fuel cells that are practical for applications requiring large current, such as automobiles and homes.

Maxell presented this new technology for synthesizing a highly-active AuPt catalyst at the 101st catalysis conference held March 29 at the Tower Hall Funabori in Tokyo.

Maxell will continue nano-technology research and development towards practical applications in polymer-electrolyte and direct-methanol fuel cells.

####

About Hitachi Maxell, Ltd.
Since its foundation in 1960, Hitachi Maxell, Ltd. (TSE: 6810) has led the electronics industry at home and abroad in the fields of memory and mobility. Maxell is a leading manufacturer of information storage media products including magnetic tapes, optical disks, and battery products including lithium ion rechargeable batteries, micro batteries and dry cell batteries. For more information on Maxell, please visit the Company's web site at www.maxell.com .

For more information, please click here

Contacts:
Hitachi Maxell
Corporate Communications
Tel: +81-3-3515-8211

Copyright © Hitachi Maxell, Ltd.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Announcements

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Quantum obstacle course changes material from superconductor to insulator December 1st, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Energy

Research Study: MetaSOLTM Shatters Solar Panel Efficiency Forecasts with Innovative New Coating: Coating Provides 1.2 Percent Absolute Enhancement to Triple Junction Solar Cells December 2nd, 2016

Deep insights from surface reactions: Researchers use Stampede supercomputer to study new chemical sensing methods, desalination and bacterial energy production December 2nd, 2016

Throwing new light on printed organic solar cells December 1st, 2016

Physics, photosynthesis and solar cells: Researchers combine quantum physics and photosynthesis to make discovery that could lead to highly efficient, green solar cells November 30th, 2016

Automotive/Transportation

'Back to the Future' inspires solar nanotech-powered clothing November 15th, 2016

Nanocellulose in medicine and green manufacturing: American University professor develops method to improve performance of cellulose nanocrystals November 7th, 2016

Diamond nanothread: Versatile new material could prove priceless for manufacturing: Would you dress in diamond nanothreads? It's not as far-fetched as you might think November 3rd, 2016

Hybrid nanostructures hold hydrogen well: Rice University scientists say boron nitride-graphene hybrid may be right for next-gen green cars October 25th, 2016

Fuel Cells

Water vapor sets some oxides aflutter: Newly discovered phenomenon could affect materials in batteries and water-splitting devices October 3rd, 2016

Carbon-coated iron catalyst structure could lead to more-active fuel cells September 15th, 2016

Imperial College use Kleindiek micromanipulators in their research into electrochemical energy devices September 6th, 2016

Iowa State engineers treat printed graphene with lasers to enable paper electronics September 2nd, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project