Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Nano-Softball Made of DNA

Can 20 trisoligonucleotides with 20×3 individual sequences be programmed to self-assemble into a DNA dodecahedron? The answer is yes if one starts from a new generation of trisoligonucleotides based on C3h-symmetric linkers with proper flexibility. The resulting dodecahedron has C1 symmetry and may facilitate the construction of multimodular scaffolds in the future.

Credit: (C) Wiley-VCH
Can 20 trisoligonucleotides with 20×3 individual sequences be programmed to self-assemble into a DNA dodecahedron? The answer is yes if one starts from a new generation of trisoligonucleotides based on C3h-symmetric linkers with proper flexibility. The resulting dodecahedron has C1 symmetry and may facilitate the construction of multimodular scaffolds in the future.
Credit: (C) Wiley-VCH

Abstract:
'Programmed' oligonucleotides with 3 branches organize themselves into dodecahedra

Nano-Softball Made of DNA

Germany | Posted on April 2nd, 2008

For quite some time, DNA, the stuff our genes are made of, has also been considered the building material of choice for nanoscale objects. A team led by Günter von Kiedrowski at the Ruhr University in Bochum has now made a dodecahedron (a geometric shape with twelve surfaces) from DNA building blocks. As reported in the journal Angewandte Chemie, these objects are formed in a self-assembly process from 20 individual trisoligonucleotides, building blocks consisting of a "branching junction" and three short DNA strands.

A regular dodecahedron is a geometric shape made of 12 pentagons of equal size, three of which are connected at every vertex. This results in a structure with 30 edges and 20 vertices. In order to produce a hollow dodecahedral object from DNA, the researchers used 20 "three-legged" building blocks (three DNA strands connected together at one point). The centers of these building blocks represent the vertices of the dodecahedron. The three edges projecting from each vertex are formed when a single strand of DNA converts two neighboring bridging components into a double strand.

In order for this process to result in a dodecahedron and not some other random geometric object, all of the DNA strands must have a different sequence. Among these, there must, however, be pairs of complementary strands that can bind to each other.

By using a computer program, the researchers identified a set of 30 independent, 15-base-pair-long, double-stranded DNA sequences with similar physical properties. The double-stranded sequences were assigned to the individual edges of the dodecahedron and to specific vertices for termination. It was then determined which three single-stranded sequences needed to be attached to each three-legged junction for the predetermined structure to form.

The team synthesized the 20 computed trisoligonucleotides by means of a solid-phase synthesis. The three DNA strands were always attached by way of an aromatic six-membered carbon ring. When mixed in equal parts in a buffer solution, these building blocks do aggregate to form the expected product: regular dodecahedra. Atomic force microscopy images reveal them to be uniform particles with a diameter of about 20 nm. Under pressure, the dodecahedra are quite flexible, the can be deformed like "soft balls" without incurring any damage.

If the trisoligonucleotides are equipped with pendant "arms", the dodecahedra can be outfitted with additional functional molecules. In this way, highly complex nanoconstructs, resembling little viruses in shape and size, should be accessible in the future. Potential applications range from medical diagnostics to nanoelectronics.

Author: Günter von Kiedrowski, Ruhr-Universität Bochum (Germany), http://www.ruhr-uni-bochum.de/oc1/mitarbeiter/Guenter-Kiedrowski.html
Title: Self-Assembly of a DNA Dodecahedron from 20 Trisoligonucleotides with C3h Linkers
Angewandte Chemie International Edition, doi: 10.1002/anie.200702682

####

For more information, please click here

Contacts:
Guenter von Kiedrowski

49-234-323-218

Copyright © Wiley-Blackwell

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanomedicine

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

A new way to mix oil and water: Condensation-based method developed at MIT could create stable nanoscale emulsions November 8th, 2017

Discoveries

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

ICN2 researchers compute unprecedented values for spin lifetime anisotropy in graphene November 17th, 2017

Announcements

Report highlights opportunities and risks associated with synthetic biology and bioengineering November 22nd, 2017

Quantum optics allows us to abandon expensive lasers in spectroscopy: Lomonosov Moscow State University scientists have invented a new method of spectroscopy November 21st, 2017

Nano-watch has steady hands November 21st, 2017

Nano Global, Arm Collaborate on Artificial Intelligence Chip to Drive Health Revolution by Capturing and Analyzing Molecular Data in Real Time November 21st, 2017

Nanobiotechnology

Nanoparticles could allow for faster, better medicine: Exposure of nanoparticles in the body allows for more effective delivery November 20th, 2017

Nanobiotix presented new clinical and pre-clinical data confirming NBTXR3’s significant potential role in Immuno-Oncology at SITC Annual Meeting November 14th, 2017

Arrowhead to Present at 29th Annual Piper Jaffray Healthcare Conference November 14th, 2017

Nanoshells could deliver more chemo with fewer side effects: In vitro study verifies method for remotely triggering release of cancer drugs November 8th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project