Nanotechnology Now

Our NanoNews Digest Sponsors


Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Think green, UO's Hutchison says, to reduce nanotech hazards

UO chemist Jim Hutchison pushes for green nanotechnology to reduce hazards in ACS Nano
(Photo by John Bauguess)
UO chemist Jim Hutchison pushes for green nanotechnology to reduce hazards in ACS Nano

(Photo by John Bauguess)

Abstract:
In an invited paper in the international journal ACS Nano, UO prof points to greener nanoscience as a key to safety

Approaches to Uncertainty in Nanomaterials

"One of our greatest assets in nanoscience, the largely unexplored nanoscale world that we are trying to understand, is also perhaps the biggest hindrance to the application of nanomaterials to the macroscopic world. We need to understand the impact of these nanomaterials on us and on the world around us. Greater understanding of the key aspects of these materials and their roles, better characterization methods, and narrower variations will all make applications both easier and safer."


Paul S. Weiss, Editor-in-Chief, and Penelope A. Lewis, Managing Editor
of ACS Nano in an editorial that points to an article by the UO's Jim Hutchison

Think green, UO's Hutchison says, to reduce nanotech hazards

EUGENE, OR | Posted on March 31st, 2008

The University of Oregon's Jim Hutchison already holds three patents in the emerging field of nanotechnology as well as leadership roles in organizations that promote the technology's potential in materials science and medicine.

Hutchison, a chemist and materials scientist, however, also embraces a strong call for exploring potential environmental and health implications, which he says could be many, and for designing new materials with reduced hazard. The available data, he notes, are often uncertain or in conflict. He urges the industry to adopt a proactive approach now, before unforeseen roadblocks threaten the technology's progress.

"The absence of data or seemingly conflicting data -- for example, research articles and subsequent media reports that contribute to uncertainty about the hazards of carbon nanotubes -- reduces public confidence in product safety and invigorates activist groups that aim to prevent the use of nanomaterials in products of commerce," Hutchison writes in the March issue of ACS Nano, an international journal of the American Chemical Society.

Carbon nanotubes are molecules shaped like cylinders and have unique properties potentially useful in electronics, optics and various other materials. They are manufactured and synthesized in many different ways, and produce different results when trying to assess their safety.

"Without relevant data, innovators are forced to rely on 'reasonable worst-case scenarios' in applying risk-management frameworks or may not discover product hazards until late in product development," writes Hutchison, who is the leader of the Safer Nanomaterials and Nanomanufacturing Initiative of the Oregon Nanoscience and Microtechnologies Institute (ONAMI). "The lack of information on material safety hinders innovation and places companies at considerable risk of failure."

Nanomaterials are complex, as are their interactions with biological organisms and the environment. While microscopically sized, they come in all sizes, shapes and compositions. "To confound the situation further," he writes, "the methods of production are still immature for most materials, often resulting in batch-to-batch variability in composition and purity." Impurities, he says, are hard to detect, difficult to extract and may obscure the real effects of nanomaterials.

In his article, Hutchison, who also is the UO's associate vice president for research and strategic initiatives, argues that "interdisciplinary teams that partner life, environmental and nanomaterial scientists need to work together to define standard approaches and share expertise to accelerate the collection of definitive data on nanomaterial hazards."

He has carried that message to numerous meetings of scientists involved in nanotechnology, a March 10 talk at the Greener Nano 2008 meeting in Corvallis, Ore., and in a presentation Dec. 17 to the Congressional Nanotech Caucus. Safety must be at the forefront, Hutchison says, as Congress considers reauthorization of the 21st Century Nanotechnology Research and Development Act.

Researchers need to come out of isolated labs, Hutchison says, and work collaboratively to address design, synthesis, characterization, and biological and environmental impacts. He praises an early effort to just that: the Nanotechnology Characterization Laboratory, a collaborative effort of the National Cancer Institute, National Institute of Standards and Technology and the Food and Drug Administration. He also notes the new federally funded NanoHealth Enterprise Initiative.

In ACS Nano, Hutchison addresses how green chemistry can reduce byproducts and simplify purification. He cites, as an example, how a particular material, using conventional chemistry, takes three days to purify and results in 15 liters of solvent per gram of nanoparticle. Using a green chemistry approach, he notes, the same thing is done in 15 minutes, and "the purification method can effectively reduce solvent consumption and provide cleaner, well-defined building blocks."

The time to implement green chemistry into nanotechnology is now, he says, before the industry exits its discovery phase, in which only small quantities of nanomaterials have been produced, and enters the production phase that will require the production of large quantities of nanomaterials that may pose potentially industry-stopping health and environmental problems.

Hutchison explains how the 12 principles of green chemistry can guide the design, production and use of nanomaterials. A green-chemistry approach, he says, should initially focus on determining the hazards of a narrow subset of nanomaterials that are closest to commercialization.

"Although these materials warrant immediate attention," he writes, "the information received from these studies will not provide enough correlations between nanomaterial structure and material hazard to design alternatives to those materials found to have an unacceptable level of hazard. A broader focus is needed to determine the design rules so that (re)design for product safety does not stall innovation and commercialization."

####

About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Contacts:
Jim Barlow
541-346-3481,

Source:
Jim Hutchison
professor of chemistry
541-346-4228

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Listen to an ACS podcast interview with Jim Hutchison

Related News Press

News and information

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Chemistry

The intermediates in a chemical reaction photographed 'red-handed' Researchers at the UPV/EHU-University of the Basque Country have for the first time succeeded in imaging all the steps in a complex organic reaction and have resolved the mechanisms that explain it May 4th, 2016

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

Adding some salt to the recipe for energy storage materials: Researchers use common table salt as growth template April 22nd, 2016

Team builds first quantum cascade laser on silicon: Eliminates the need for an external light source for mid-infrared silicon photonic devices or photonic circuits April 21st, 2016

Announcements

Speedy ion conduction in solid electrolytes clears road for advanced energy devices May 5th, 2016

Engineers create a better way to boil water -- with industrial, electronics applications May 5th, 2016

Clues on the path to a new lithium battery technology: Charging produces highly reactive singlet oxygen in lithium air batteries May 5th, 2016

Unique nano-capsules promise the targeted drug delivery: Russian scientists created unique nano-capsules for the targeted drug delivery May 5th, 2016

Patents/IP/Tech Transfer/Licensing

New tool allows scientists to visualize 'nanoscale' processes May 4th, 2016

System creates on-demand 'nanotube forests,' has potential industry applications April 20th, 2016

Smaller. Cheaper. Better. Iron nitride transformers developed at Sandia could boost energy storage options March 28th, 2016

Correction: Solar fuels: Protective layer for the 'artificial leaf' March 22nd, 2016

Safety-Nanoparticles/Risk management

Non-animal approach to predict impact of nanomaterials on human lung published Archives of Toxicology publishes workshop recommendations May 2nd, 2016

Scientists propose non-animal tools for assessing the toxicity of nanomaterials: Particle and Fibre Toxicology publishes recommendations from expert group meeting April 26th, 2016

The impact of anti-odor clothing on the environment March 31st, 2016

SUNY Poly, in Collaboration with the George Washington School of Medicine and Health Sciences and Stony Brook University, Demonstrates Pioneering Method to Visualize and Identify Engineered Nanoparticles in Tissue March 25th, 2016

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







Car Brands
Buy website traffic