Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button


Home > Press > Think green, UO's Hutchison says, to reduce nanotech hazards

UO chemist Jim Hutchison pushes for green nanotechnology to reduce hazards in ACS Nano
(Photo by John Bauguess)
UO chemist Jim Hutchison pushes for green nanotechnology to reduce hazards in ACS Nano

(Photo by John Bauguess)

In an invited paper in the international journal ACS Nano, UO prof points to greener nanoscience as a key to safety

Approaches to Uncertainty in Nanomaterials

"One of our greatest assets in nanoscience, the largely unexplored nanoscale world that we are trying to understand, is also perhaps the biggest hindrance to the application of nanomaterials to the macroscopic world. We need to understand the impact of these nanomaterials on us and on the world around us. Greater understanding of the key aspects of these materials and their roles, better characterization methods, and narrower variations will all make applications both easier and safer."

Paul S. Weiss, Editor-in-Chief, and Penelope A. Lewis, Managing Editor
of ACS Nano in an editorial that points to an article by the UO's Jim Hutchison

Think green, UO's Hutchison says, to reduce nanotech hazards

EUGENE, OR | Posted on March 31st, 2008

The University of Oregon's Jim Hutchison already holds three patents in the emerging field of nanotechnology as well as leadership roles in organizations that promote the technology's potential in materials science and medicine.

Hutchison, a chemist and materials scientist, however, also embraces a strong call for exploring potential environmental and health implications, which he says could be many, and for designing new materials with reduced hazard. The available data, he notes, are often uncertain or in conflict. He urges the industry to adopt a proactive approach now, before unforeseen roadblocks threaten the technology's progress.

"The absence of data or seemingly conflicting data -- for example, research articles and subsequent media reports that contribute to uncertainty about the hazards of carbon nanotubes -- reduces public confidence in product safety and invigorates activist groups that aim to prevent the use of nanomaterials in products of commerce," Hutchison writes in the March issue of ACS Nano, an international journal of the American Chemical Society.

Carbon nanotubes are molecules shaped like cylinders and have unique properties potentially useful in electronics, optics and various other materials. They are manufactured and synthesized in many different ways, and produce different results when trying to assess their safety.

"Without relevant data, innovators are forced to rely on 'reasonable worst-case scenarios' in applying risk-management frameworks or may not discover product hazards until late in product development," writes Hutchison, who is the leader of the Safer Nanomaterials and Nanomanufacturing Initiative of the Oregon Nanoscience and Microtechnologies Institute (ONAMI). "The lack of information on material safety hinders innovation and places companies at considerable risk of failure."

Nanomaterials are complex, as are their interactions with biological organisms and the environment. While microscopically sized, they come in all sizes, shapes and compositions. "To confound the situation further," he writes, "the methods of production are still immature for most materials, often resulting in batch-to-batch variability in composition and purity." Impurities, he says, are hard to detect, difficult to extract and may obscure the real effects of nanomaterials.

In his article, Hutchison, who also is the UO's associate vice president for research and strategic initiatives, argues that "interdisciplinary teams that partner life, environmental and nanomaterial scientists need to work together to define standard approaches and share expertise to accelerate the collection of definitive data on nanomaterial hazards."

He has carried that message to numerous meetings of scientists involved in nanotechnology, a March 10 talk at the Greener Nano 2008 meeting in Corvallis, Ore., and in a presentation Dec. 17 to the Congressional Nanotech Caucus. Safety must be at the forefront, Hutchison says, as Congress considers reauthorization of the 21st Century Nanotechnology Research and Development Act.

Researchers need to come out of isolated labs, Hutchison says, and work collaboratively to address design, synthesis, characterization, and biological and environmental impacts. He praises an early effort to just that: the Nanotechnology Characterization Laboratory, a collaborative effort of the National Cancer Institute, National Institute of Standards and Technology and the Food and Drug Administration. He also notes the new federally funded NanoHealth Enterprise Initiative.

In ACS Nano, Hutchison addresses how green chemistry can reduce byproducts and simplify purification. He cites, as an example, how a particular material, using conventional chemistry, takes three days to purify and results in 15 liters of solvent per gram of nanoparticle. Using a green chemistry approach, he notes, the same thing is done in 15 minutes, and "the purification method can effectively reduce solvent consumption and provide cleaner, well-defined building blocks."

The time to implement green chemistry into nanotechnology is now, he says, before the industry exits its discovery phase, in which only small quantities of nanomaterials have been produced, and enters the production phase that will require the production of large quantities of nanomaterials that may pose potentially industry-stopping health and environmental problems.

Hutchison explains how the 12 principles of green chemistry can guide the design, production and use of nanomaterials. A green-chemistry approach, he says, should initially focus on determining the hazards of a narrow subset of nanomaterials that are closest to commercialization.

"Although these materials warrant immediate attention," he writes, "the information received from these studies will not provide enough correlations between nanomaterial structure and material hazard to design alternatives to those materials found to have an unacceptable level of hazard. A broader focus is needed to determine the design rules so that (re)design for product safety does not stall innovation and commercialization."


About University of Oregon
The University of Oregon is a world-class teaching and research institution and Oregon's flagship public university. The UO is a member of the Association of American Universities (AAU), an organization made up of 62 of the leading public and private research institutions in the United States and Canada. Membership in the AAU is by invitation only. The University of Oregon is one of only two AAU members in the Pacific Northwest.

For more information, please click here

Jim Barlow

Jim Hutchison
professor of chemistry

Copyright © University of Oregon

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Listen to an ACS podcast interview with Jim Hutchison

Related News Press

News and information

Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Horizontal magnetic tunneling in a field-effect device integrated on Silicon October 3rd, 2015

Crystal clear: Thousand-fold fluorescence enhancement in an all-polymer thin film: Griffith University researchers report breakthrough due to novel and multi-layer Colloidal Photonic Crystal structure October 2nd, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015


Rice news release: Smaller is better for nanotube analysis: Rice University's variance spectroscopy technique advances nanoparticle analysis September 30th, 2015

Molecular diagnostics at home: Chemists design rapid, simple, inexpensive tests using DNA: Electrochemical test's sensing principle may be generalized to many different targets, leading to inexpensive devices that could detect dozens of disease markers in less than 5 minutes September 23rd, 2015

Characterizing the forces that hold everything together: UMass Amherst physicists offer new open source calculations for molecular interactions September 23rd, 2015

Platinum and iron oxide working together get the job done: Scientists at the Vienna University of Technology (TU Wien) have figured out how a platinum catalyst works -- its remarkable properties are not just due to the platinum, the iron-oxide substrate beneath also plays a role September 17th, 2015


Scientists found a natural nanostructure to control the flow of light October 4th, 2015

Industrial Nanotech, Inc. Announces New Office in Arizona to Service the Company's New Regional and National Home Builders in Arizona and Nevada October 2nd, 2015

Production of High Temperature Ceramics with Modified Properties in Iran October 2nd, 2015

ISO Approves 2 Int'l Nanotechnology-Related Standards Proposed by Iran October 2nd, 2015

Patents/IP/Tech Transfer/Licensing

Graphene Has a Place on the Hype Cycle, Says European Flagship Director October 1st, 2015

Wearable electronic health patches may now be cheaper and easier to make September 30th, 2015

An engineered surface unsticks sticky water droplets August 31st, 2015

Developing Component Scale Composites Using Nanocarbons August 26th, 2015

Safety-Nanoparticles/Risk management

Silver Nanoparticles Coating on Paper through Biological Methods September 22nd, 2015

Nanotech expertise earns Virginia Tech a spot in National Science Foundation network: New center's focus will be on earth, environmental nanotechnology September 16th, 2015

Nano in food and agriculture: Regulations require collaboration to ensure safety September 14th, 2015

Multi-million pound project to use nanotechnology to improve safety September 4th, 2015

The latest news from around the world, FREE

  Premium Products
Only the news you want to read!
 Learn More
University Technology Transfer & Patents
 Learn More
Full-service, expert consulting
 Learn More

Nanotechnology Now Featured Books


The Hunger Project

Car Brands
Buy website traffic