Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Futuristic Electronics and Better Diplomacy Among the Focuses of Pitt-Involved Research for U.S. Defense Department

Abstract:
Pitt will receive nearly $2.7 million as part of collaborative research with universities around the country

Futuristic Electronics and Better Diplomacy Among the Focuses of Pitt-Involved Research for U.S. Defense Department

PITTSBURGH, PA | Posted on March 31st, 2008

High-density electronics of the future and more effective diplomacy are among the possible outcomes of a combined $2.7 million that two University of Pittsburgh researchers will receive as part of collaborative projects for the U.S. Department of Defense. The Multidisciplinary University Research Initiative (MURI) program-which supports basic research of interest to the Defense Department-will devote $200 million over the next five years to 34 multi-institutional projects, three of which involve Pitt.

Pitt professor Jeremy Levy in the Department of Astronomy and Physics in the School of Arts and Sciences was awarded $1.1 million as part of a five-year, $6.5 million project to investigate future applications of electron spin, which may allow for faster and less power-consuming information technology. Michael Lewis, a professor in the School of Information Sciences, will receive a total of nearly $1.5 million for two MURI projects totaling $13.75 million: One will evaluate the feasibility of a decentralized military communication system; another is meant to help military negotiators better cooperate with people of different cultures.

Levy will collaborate with researchers from four other universities to apply electron spin to organic semiconductors and other materials in an attempt to create devices that can store and transfer information with more density but by using less power. Electron spin-the interaction between spinning electrons and magnetic materials-is used in today's computer hard drives and allows highly sensitive sensors to probe the drive's minute magnetic domains. As a result, hard drives are smaller and maintain higher information density.

Levy and his colleagues want to extend these spin-based electronic effects in new ways and with new materials, providing the scientific basis for future technologies. Levy will use state-of-the-art optical and scanning probe techniques to investigate the properties of materials fabricated by his colleagues at the University of Iowa, the University of California at Berkeley, and New York University. Theoretical support will come from researchers at Iowa and the University of Missouri at Columbia.

Levy also will investigate further uses for a technique he developed and published in "Nature Materials" in March. He discovered how to switch, at will, the interface of two readily formed insulating materials from an electrical conductor to an insulator and back at nanoscale dimensions. Levy and his team created wires less than 4 nanometers wide at the interface of two insulators. These conducting nanostructures can subsequently be erased, rendering the interface an insulator once more. This adjustability holds promise for more powerful and compact information technologies, including ultra-high density information storage, reconfigurable logic devices, single-electron devices, and quantum computers.

Lewis will receive almost $600,000 from MURI to create methods for observing how cultural differences influence negotiation. Lewis specializes in human interaction with and through computers and machines, including virtual environments, human error, negotiation, and e-commerce. His work for MURI is part of a $6.25 million project to understand the dynamics of cooperation and negotiation-and the factors that lead to success or disaster. He will work with researchers from Carnegie Mellon University, the University of Michigan, Georgetown University, and the University of Southern California.

Because geographic and language barriers render cultural differences particularly difficult to observe, Lewis and his team at Pitt will develop a browser-based negotiation environment to offset distance and language. For example, language differences would be overcome by having subjects compose offers and arguments using lists and menus in their native tongue. Also, Webcams, microphones, and translators can help make interaction more personal. Once the negotiations are recorded, Lewis will provide them to the partner institutions to identify aspects of negotiation that are universal and unique to a particular culture and those that become significant in cross-cultural interaction. The project results will be used for training military negotiators.

Lewis also will receive nearly $1 million as part of a $7.5 million project involving researchers from Carnegie Mellon, Massachusetts Institute of Technology, Cornell University, and George Mason University to study the benefits and pitfalls of a decentralized military information network.

Their work will involve a developing military communication system that bucks the traditional hierarchy and instead shifts information processing and decision making to a peer-to-peer network outside the chain of command. This could allow soldiers and robots to better communicate and react in fast-changing situations on the ground. On the other hand, the lack of a central command to filter information could lead to confusion among soldiers. Lewis will evaluate the strengths and weaknesses of the proposed network as it relates to how teams of soldiers are able interact with the communication system itself.

The competitive MURI program received 104 proposals in 18 topics. The selected projects include 64 universities, which will receive a total of $19.7 million in fiscal year 2008. Panels of experts in the respective fields selected the projects based on scientific merit. For more information on the MURI awards, visit the Defense Department's Web site at www.defenselink.mil/releases/release.aspx?releaseid=11765.

####

About University of Pittsburgh
Founded in 1787 as a small, private school, the Pittsburgh Academy was located in a log cabin near Pittsburgh’s three rivers. In the 220 years since, the University has evolved into an internationally recognized center of learning and research.

For more information, please click here

Contacts:
Morgan Kelly
412-624-4356 (office)
412-897-1400 (cell)

Copyright © University of Pittsburgh

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

One step closer to a single-molecule device: Columbia Engineering researchers first to create a single-molecule diode -- the ultimate in miniaturization for electronic devices -- with potential for real-world applications May 25th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

Spintronics

New options for spintronic devices: Switching magnetism between 1 and 0 with low voltage near room temperature May 18th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Heat makes electrons’ spin in magnetic superconductors April 26th, 2015

Drexel materials scientists putting a new spin on computing memory April 22nd, 2015

Quantum Computing

Researchers discover 'swing-dancing' pairs of electrons: Findings set the stage for room-temperature superconductivity and the transformation of high-speed rail, quantum computers May 14th, 2015

Researchers build new fermion microscope: Instrument freezes and images 1,000 individual fermionic atoms at once May 13th, 2015

Quantum 'gruyères' for spintronics of the future: Topological insulators become a little less 'elusive' May 12th, 2015

Magic wavelengths: Tuning up Rydberg atoms for quantum information applications May 12th, 2015

Announcements

Physicists solve quantum tunneling mystery: ANU media release: An international team of scientists studying ultrafast physics have solved a mystery of quantum mechanics, and found that quantum tunneling is an instantaneous process May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

Controlled Release of Anticorrosive Materials in Spot by Nanocarriers May 27th, 2015

Nanobiotechnology

Seeing the action: UCSB researchers develop a novel device to image the minute forces and actions involved in cell membrane hemifusion May 27th, 2015

Nanotechnology identifies brain tumor types through MRI 'virtual biopsy' in animal studies: If results are confirmed in humans, tumor cells could someday be diagnosed by MRI imaging and treated with tumor-specific IV injections; new NIH grant will fund future study May 27th, 2015

Who needs water to assemble DNA? Non-aqueous solvent supports DNA nanotechnology May 27th, 2015

DNA Double Helix Does Double Duty in Assembling Arrays of Nanoparticles: Synthetic pieces of biological molecule form framework and glue for making nanoparticle clusters and arrays May 25th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project