Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Silicon chips for optical quantum technologies

Generating and detecting single photons
Photo by Carmel King (www.carmelking.com)
Generating and detecting single photons
Photo by Carmel King (www.carmelking.com)

Abstract:
A team of physicists and engineers has demonstrated exquisite control of single particles of light - photons - on a silicon chip to make a major advance towards the long sought after goal of a super-powerful quantum computer.

Silicon chips for optical quantum technologies

Bristol, UK | Posted on March 27th, 2008

O'Brien, his PhD student Alberto Politi, and their colleagues at Bristol University have demonstrated the world's smallest optical controlled-NOT gate - the building block of a quantum computer.

The team were able to fabricate their controlled-NOT gate from silica wave-guides on a silicon chip, resulting in a miniaturised device and high-performance operation.

"This is a crucial step towards a future optical quantum computer, as well as other quantum technologies based on photons," said Dr O'Brien.

The team reports its results in the March 27 2008 Science Express - the advanced online publication of the journal Science.

Quantum technologies with photons

Quantum technologies aim to exploit the unique properties of quantum mechanics, the physics theory that explains how the world works at very small scales.

For example a quantum computer relies on the fact that quantum particles, such as photons, can exist in a "superposition" of two states at the same time - in stark contrast to the transistors in a PC which can only be in the state "0" or "1".

Photons are an excellent choice for quantum technologies because they are relatively noise free; information can be moved around quickly - at the speed of light; and manipulating single photons is easy.

Making two photons "talk" to each other to realise the all-important controlled-NOT gate is much harder, but Dr O'Brien and his colleagues at the University of Queensland demonstrated this back in 2003 [Nature 426, 264].

Photons must also "talk" to each other to realise the ultra-precise measurements that harness the laws of quantum mechanics - quantum metrology.

Last year Dr O'Brien and his collaborator Professor Takeuchi and co-workers at Hokkaido University reported such a quantum metrology measurement with four photons [Science 316, 726].

Silica-on-silicon wave-guide quantum circuits

"Despite these and other impressive demonstrations, quantum optical circuits have typically relied on large optical elements with photons propagating in air, and consuming a square metre of optical table. This has made them hard to build and difficult to scale up," said Alberto Politi.

"For the last several years the Centre for Quantum Photonics has been working towards building controlled-NOT gates and other important quantum circuits on a chip to solve these problems," added Dr O'Brien.

The team's chips, fabricated at CIP Technologies, have dimensions measured in millimetres.

This impressive miniaturisation was permitted thanks to the silica-on-silicon technology used in commercial devices for modern optical telecommunications, which guides light on a chip in the same way as in optical fibres.

The team generated pairs of photons which each encoded a quantum bit or qubit of information. They coupled these photons into and out of the controlled-NOT chip using optical fibres. By measuring the output of the device they confirmed high-fidelity operation.

In the experimental characterisation of the quantum chips the researchers also proved that one of the strangest phenomena of the quantum world, namely "quantum entanglement", was achieved on-chip. Quantum entanglement of two particles means that the state of either of the particles is not defined, but only their collective state.

This on-chip entanglement has important applications in quantum metrology.

"As well as quantum computing and quantum metrology, on-chip photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Alberto Politi.

In addition to Dr O'Brien and Alberto Politi co-authors of the Science paper are Dr Martin Cryan, Professor John Rarity, and Dr Siyuan Yu.

The work was funded by the US government Intelligence Advanced Research Projects Activity (IARPA), the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), the Engineering and Physical Sciences Research Council (EPSRC), and the Leverhulme Trust.

####

About University of Bristol
Research of the highest standard is at the heart of our mission. It contributes to the University's international reputation, it informs and stimulates our teaching and it contributes to the economy of the South West, the UK and globally. In the latest independent assessment of research quality (RAE 2001), 78 per cent of Bristol University's departments were judged to be world class or internationally excellent. Bristol is also one of the leaders in the UK university enterprise agenda, building on research and education to deliver benefit to the local community and the UK knowledge economy.

For more information, please click here

Contacts:
Joanne Fryer

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Chip Technology

Materials for the next generation of electronics and photovoltaics: MacArthur Fellow develops new uses for carbon nanotubes October 21st, 2014

Nitrogen Doped Graphene Characterized by Iranian, Russian, German Scientists October 21st, 2014

Crystallizing the DNA nanotechnology dream: Scientists have designed the first large DNA crystals with precisely prescribed depths and complex 3D features, which could create revolutionary nanodevices October 20th, 2014

Imaging electric charge propagating along microbial nanowires October 20th, 2014

Quantum Computing

1980s aircraft helps quantum technology take flight October 20th, 2014

Australian teams set new records for silicon quantum computing October 12th, 2014

Ultrafast remote switching of light emission October 2nd, 2014

Quantum environmentalism: Putting a qubit's surroundings to good use October 2nd, 2014

Optical Computing

Nanoparticles Break the Symmetry of Light October 6th, 2014

Speed at its limits September 30th, 2014

'Pixel' engineered electronics have growth potential: Rice, Oak Ridge, Vanderbilt, Penn scientists lead creation of atom-scale semiconducting composites September 29th, 2014

Engineers show light can play seesaw at the nanoscale: Discovery is another step toward faster and more energy-efficient optical devices for computation and communication September 22nd, 2014

Discoveries

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

Announcements

Special UO microscope captures defects in nanotubes: University of Oregon chemists provide a detailed view of traps that disrupt energy flow, possibly pointing toward improved charge-carrying devices October 21st, 2014

Super stable garnet ceramics may be ideal for high-energy lithium batteries October 21st, 2014

Could I squeeze by you? Ames Laboratory scientists model molecular movement within narrow channels of mesoporous nanoparticles October 21st, 2014

Detecting Cancer Earlier is Goal of Rutgers-Developed Medical Imaging Technology: Rare earth nanocrystals and infrared light can reveal small cancerous tumors and cardiovascular lesions October 21st, 2014

NanoNews-Digest
The latest news from around the world, FREE





  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE