Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Silicon chips for optical quantum technologies

Generating and detecting single photons
Photo by Carmel King (www.carmelking.com)
Generating and detecting single photons
Photo by Carmel King (www.carmelking.com)

Abstract:
A team of physicists and engineers has demonstrated exquisite control of single particles of light - photons - on a silicon chip to make a major advance towards the long sought after goal of a super-powerful quantum computer.

Silicon chips for optical quantum technologies

Bristol, UK | Posted on March 27th, 2008

O'Brien, his PhD student Alberto Politi, and their colleagues at Bristol University have demonstrated the world's smallest optical controlled-NOT gate - the building block of a quantum computer.

The team were able to fabricate their controlled-NOT gate from silica wave-guides on a silicon chip, resulting in a miniaturised device and high-performance operation.

"This is a crucial step towards a future optical quantum computer, as well as other quantum technologies based on photons," said Dr O'Brien.

The team reports its results in the March 27 2008 Science Express - the advanced online publication of the journal Science.

Quantum technologies with photons

Quantum technologies aim to exploit the unique properties of quantum mechanics, the physics theory that explains how the world works at very small scales.

For example a quantum computer relies on the fact that quantum particles, such as photons, can exist in a "superposition" of two states at the same time - in stark contrast to the transistors in a PC which can only be in the state "0" or "1".

Photons are an excellent choice for quantum technologies because they are relatively noise free; information can be moved around quickly - at the speed of light; and manipulating single photons is easy.

Making two photons "talk" to each other to realise the all-important controlled-NOT gate is much harder, but Dr O'Brien and his colleagues at the University of Queensland demonstrated this back in 2003 [Nature 426, 264].

Photons must also "talk" to each other to realise the ultra-precise measurements that harness the laws of quantum mechanics - quantum metrology.

Last year Dr O'Brien and his collaborator Professor Takeuchi and co-workers at Hokkaido University reported such a quantum metrology measurement with four photons [Science 316, 726].

Silica-on-silicon wave-guide quantum circuits

"Despite these and other impressive demonstrations, quantum optical circuits have typically relied on large optical elements with photons propagating in air, and consuming a square metre of optical table. This has made them hard to build and difficult to scale up," said Alberto Politi.

"For the last several years the Centre for Quantum Photonics has been working towards building controlled-NOT gates and other important quantum circuits on a chip to solve these problems," added Dr O'Brien.

The team's chips, fabricated at CIP Technologies, have dimensions measured in millimetres.

This impressive miniaturisation was permitted thanks to the silica-on-silicon technology used in commercial devices for modern optical telecommunications, which guides light on a chip in the same way as in optical fibres.

The team generated pairs of photons which each encoded a quantum bit or qubit of information. They coupled these photons into and out of the controlled-NOT chip using optical fibres. By measuring the output of the device they confirmed high-fidelity operation.

In the experimental characterisation of the quantum chips the researchers also proved that one of the strangest phenomena of the quantum world, namely "quantum entanglement", was achieved on-chip. Quantum entanglement of two particles means that the state of either of the particles is not defined, but only their collective state.

This on-chip entanglement has important applications in quantum metrology.

"As well as quantum computing and quantum metrology, on-chip photonic quantum circuits could have important applications in quantum communication, since they can be easily integrated with optical fibres to send photons between remote locations," said Alberto Politi.

In addition to Dr O'Brien and Alberto Politi co-authors of the Science paper are Dr Martin Cryan, Professor John Rarity, and Dr Siyuan Yu.

The work was funded by the US government Intelligence Advanced Research Projects Activity (IARPA), the Quantum Information Processing Interdisciplinary Research Collaboration (QIP IRC), the Engineering and Physical Sciences Research Council (EPSRC), and the Leverhulme Trust.

####

About University of Bristol
Research of the highest standard is at the heart of our mission. It contributes to the University's international reputation, it informs and stimulates our teaching and it contributes to the economy of the South West, the UK and globally. In the latest independent assessment of research quality (RAE 2001), 78 per cent of Bristol University's departments were judged to be world class or internationally excellent. Bristol is also one of the leaders in the UK university enterprise agenda, building on research and education to deliver benefit to the local community and the UK knowledge economy.

For more information, please click here

Contacts:
Joanne Fryer

Copyright © University of Bristol

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Chip Technology

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Electrons screen against conductivity-killer in organic semiconductors: The discovery is the first step towards creating effective organic semiconductors, which use significantly less water and energy, and produce far less waste than their inorganic counterparts February 16th, 2024

Quantum Computing

Simulating magnetization in a Heisenberg quantum spin chain April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optical computing/Photonic computing

With VECSELs towards the quantum internet Fraunhofer: IAF achieves record output power with VECSEL for quantum frequency converters April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

Optically trapped quantum droplets of light can bind together to form macroscopic complexes March 8th, 2024

HKUST researchers develop new integration technique for efficient coupling of III-V and silicon February 16th, 2024

Discoveries

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

Chemical reactions can scramble quantum information as well as black holes April 5th, 2024

New micromaterial releases nanoparticles that selectively destroy cancer cells April 5th, 2024

Utilizing palladium for addressing contact issues of buried oxide thin film transistors April 5th, 2024

Announcements

NRL charters Navy’s quantum inertial navigation path to reduce drift April 5th, 2024

Innovative sensing platform unlocks ultrahigh sensitivity in conventional sensors: Lan Yang and her team have developed new plug-and-play hardware to dramatically enhance the sensitivity of optical sensors April 5th, 2024

Discovery points path to flash-like memory for storing qubits: Rice find could hasten development of nonvolatile quantum memory April 5th, 2024

A simple, inexpensive way to make carbon atoms bind together: A Scripps Research team uncovers a cost-effective method for producing quaternary carbon molecules, which are critical for drug development April 5th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project