Nanotechnology Now

Our NanoNews Digest Sponsors
Heifer International



Home > Press > Self-Assembled Materials Form Mini Stem Cell Lab

A sac formed by the self-assembly of small and large molecules can be used to instantly encapsulate stem cells. (The culture medium gives the sac its pink color.) © 2008 Science
A sac formed by the self-assembly of small and large molecules can be used to instantly encapsulate stem cells. (The culture medium gives the sac its pink color.) © 2008 Science

Abstract:
Imagine having one polymer and one small molecule that instantly assemble into a flexible but strong sac in which you can grow human stem cells, creating a sort of miniature laboratory. And that sac, if used for cell therapy, could cloak the stem cells from the human body's immune system and biodegrade upon arriving at its destination, releasing the stem cells to do their work.

Self-Assembled Materials Form Mini Stem Cell Lab

EVANSTON, IL | Posted on March 27th, 2008

Futuristic? Only in part. A research team from Northwestern University's Institute for BioNanotechnology in Medicine has created such sacs and demonstrated that human stem cells will grow in them. The researchers also report that the sacs can survive for weeks in culture and that their membranes are permeable to proteins. Proteins, even large ones, can travel freely across the membrane.

This new and unexpected mode of self-assembly, to be published March 28 in the journal Science, also can produce thin films whose size and shape can be tailored. The method holds promise for use in cell therapy and other biological applications as well as in the design of electronic devices by self-assembly, such as solar cells, and the design of new materials.

"We started with two molecules of interest, dissolved in water, and brought the two solutions together," said Samuel I. Stupp, Board of Trustees Professor of Materials Science and Engineering, Chemistry and Medicine, who led the research.

"We expected them to mix, but, much to our surprise, they formed a solid membrane instantly on contact. This was an exciting discovery, and we then proceeded to investigate why it happened. Understanding the surprising molecular mechanism was even more exciting."

One of the molecules is a peptide amphiphile (PA), small synthetic molecules that Stupp first developed seven years ago, which have been essential in his work on regenerative medicine. The other molecule is the biopolymer hyaluronic acid (HA), which is readily found in the human body, in places like joints and cartilage. Stupp recently had started a new research project on the regenerative medicine of cartilage, which drew him to hyaluronic acid.

"This is a clear example of informed discovery," said Stupp, director of the Institute for BioNanotechnology in Medicine. "We knew there was something interesting about the interaction between peptide amphiphiles and biopolymers from our previous work on nanostructures that can cause blood vessels to grow. And we were particularly interested in hyaluronic acid because of its role in cartilage, a tissue that adults cannot regenerate and, when damaged in joints, causes grief to humans."

Using just these two molecules, Stupp and his team can make many different structures, the two most important being sacs, which have a solid membrane on the outside and liquid inside, and flat membranes of any shape. The researchers can make the structures large or small, pick up the material with tweezers, stretch it and even easily repair the sacs through self-assembly should the material tear or have some other defect. The sacs also are robust enough to be sutured by surgeons to biological tissues.

The large (hyaluronic acid) and small (peptide amphiphile) molecules come together through supramolecular interactions, not by chemical reaction, in which covalent bonds are formed.

In the case of the flat membrane, the researchers put the peptide amphiphile solution at the bottom of a shallow mold and added on top the hyaluronic acid solution. The two interacted on contact, creating a solid. By varying the mold, the researchers produced a variety of shapes, including stars, triangles and hexagons, each having two chemically different surfaces. When dry, the materials are stiff and strong, like plastic.

In creating a sac, the researchers took advantage of the fact that hyaluronic acid (HA) molecules are larger and heavier than the smaller peptide amphiphile (PA) molecules. In a deep vial, they poured the PA solution and into that poured the HA solution. As the heavier molecules sank, the lighter molecules engulfed them, creating a closed sac with the HA solution trapped inside the membrane.

Having formed the sacs, Stupp and his team next studied human stem cells engulfed by the self-assembly process inside sacs that they placed in culture. The researchers found that the cells remained viable for up to four weeks, that a large protein -- a growth factor important in the signaling of stem cells -- could cross the membrane, and that the stem cells were able to differentiate.

"We expect that genes, siRNAs and antibodies will cross the membranes as well, making this mini cell biology lab a powerful device for research or therapies," said Stupp. "For the development of cancer therapies, we will be able to confine cells within the sacs and study their reaction to different types of therapies as well as to signaling by different cells in neighboring sacs."

In a clever demonstration of self-repair, if the sac's membrane had a hole (from a needle injection, for example), the researchers simply placed a drop of the PA solution on the tear, which interacted with the HA inside, resulting in self-assembly and a sealed hole.

"The membrane is a fascinating and unusual structure with a high degree of hierarchical order," said Stupp. "The membrane grows through a dynamic self-assembly process which generates hybrid nanofibers made up of both molecules and oriented perpendicular to the plane of the membrane. This architecture is very difficult to get spontaneously in materials. Using the right chemistry, the thick membrane structure could be designed to get conduits of charge in solar cells or nanoscale columns of catalytic nanostructures that would extend over arbitrary macroscopic dimensions."

While the underlying, highly ordered structure of the sacs and membranes has dimensions on the nanoscale, the sacs and membranes themselves can be of any dimension and are visible to the naked eye.

The Science paper is titled "Self-Assembly of Large and Small Molecules into Hierarchically Ordered Sacs and Membranes." In addition to Stupp, other authors are Ramille M. Capito (lead author), Yuri S. Velichko and Alvaro Mata, all of Northwestern's Institute for BioNanotechnology in Medicine (IBNAM); and Helena S. Azevedo, of IBNAM and the University of Minho, Portugal.

The research was supported by the U.S. Department of Energy, the National Institutes of Health and the National Science Foundation.

####

About Northwestern University
Research thrives at Northwestern University, with an annual budget of over $1.5 billion and more than $416 million in sponsored research. At Northwestern, and often with partners at Argonne National Laboratory, Fermilab, and local universities, interdisciplinary teams work to solve society's problems and facilitate clinical and commercial use of their innovations.

The interdisciplinary culture already exists throughout Northwestern University. More than 90 school-based centers and 20 University centers support interdisciplinary research on Northwestern's two lakeshore campuses. Pioneering interdisciplinary efforts in materials science, biomedical engineering, African studies, performance studies, and marketing have taken place at Northwestern. Here, researchers concentrate on solving society's problems - with results often available for clinical use or commercialization. Through the years, Northwestern research has earned international recognition in genetic medicine, nanotechnology, biochemistry, neuroscience, cancer research, and many other fields.

For more information, please click here

Contacts:
Megan Fellman
847-491-3115

Copyright © Northwestern University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

Video - Self-assembling sacs form instantly when two aqueous solutions, one containing small molecules (first drop) and another containing high molecular weight polymers (green drop), are brought together.

Related News Press

News and information

Researchers develop artificial building blocks of life March 8th, 2024

How surface roughness influences the adhesion of soft materials: Research team discovers universal mechanism that leads to adhesion hysteresis in soft materials March 8th, 2024

Two-dimensional bimetallic selenium-containing metal-organic frameworks and their calcinated derivatives as electrocatalysts for overall water splitting March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

Videos/Movies

New X-ray imaging technique to study the transient phases of quantum materials December 29th, 2022

Solvent study solves solar cell durability puzzle: Rice-led project could make perovskite cells ready for prime time September 23rd, 2022

Scientists prepare for the world’s smallest race: Nanocar Race II March 18th, 2022

Visualizing the invisible: New fluorescent DNA label reveals nanoscopic cancer features March 4th, 2022

Self Assembly

Liquid crystal templated chiral nanomaterials October 14th, 2022

Nanoclusters self-organize into centimeter-scale hierarchical assemblies April 22nd, 2022

Atom by atom: building precise smaller nanoparticles with templates March 4th, 2022

Nanostructures get complex with electron equivalents: Nanoparticles of two different sizes break away from symmetrical designs January 14th, 2022

Discoveries

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Researchers’ approach may protect quantum computers from attacks March 8th, 2024

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Announcements

What heat can tell us about battery chemistry: using the Peltier effect to study lithium-ion cells March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

Nanoscale CL thermometry with lanthanide-doped heavy-metal oxide in TEM March 8th, 2024

Nanobiotechnology

High-tech 'paint' could spare patients repeated surgeries March 8th, 2024

Researchers develop artificial building blocks of life March 8th, 2024

Curcumin nanoemulsion is tested for treatment of intestinal inflammation: A formulation developed by Brazilian researchers proved effective in tests involving mice March 8th, 2024

The Access to Advanced Health Institute receives up to $12.7 million to develop novel nanoalum adjuvant formulation for better protection against tuberculosis and pandemic influenza March 8th, 2024

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project