Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > The future of computing -- carbon nanotubes and superconductors to replace the silicon chip

Abstract:
The future of computing is under the spotlight at the Institute of Physics' Condensed Matter and Materials Physics conference at the Royal Holloway College of the University of London on 26-28 March.

The future of computing -- carbon nanotubes and superconductors to replace the silicon chip

UK | Posted on March 27th, 2008



The end of the silicon chip

The silicon chip, which has supplied several decades' worth of remarkable increases in computing power and speed, looks unlikely to be capable of sustaining this pace for more than another decade - in fact, in a plenary talk at the conference, Suman Datta of Pennsylvania State University, USA, gives the conventional silicon chip no longer than four years left to run.

As silicon computer circuitry gets ever smaller in the quest to pack more components into smaller areas on a chip, eventually the miniaturized electronic devices are undermined by fundamental physical limits. They start to become leaky, making them incapable of holding onto digital information. So if the steady increases in computing capability that we have come to take for granted are to continue, some new technology will have to take over from silicon.

Replacing the chip with carbon nanotubes

At the conference, researchers at Leeds University in the UK will report an important step towards one prospective replacement. Carbon nanotubes, discovered in 1991, are tubes of pure carbon just a few nanometres wide - about the width of a typical protein molecule, and tens of thousands of times thinner than a human hair. Because they conduct electricity, they have been proposed as ready-made molecular-scale wires for making electronic circuitry.

Some nanotubes behave as semiconductors, like silicon; others carry electric currents like metal wires. Already, fundamental elements of computer circuits such as transistors have been made from individual carbon nanotubes.

But the problem is arranging nanotubes into circuit patterns. One particular difficulty is that they are typically made as mixtures of metallic and semiconducting tubes, whereas just one type or the other is needed for a specific component. These electrical properties depend on the precise arrangement of carbon atoms in the nanotube, but that's hard to determine for single tubes.

Bryan Hickey and his coworkers at Leeds have now developed a technique that will reveal an individual nanotube's structure (and thus its electrical properties), and then allow it to be placed in a position on a surface with an accuracy of about 100 nanometres, a fraction of the width of a human blood cell. The nanotubes are grown on a perforated ceramic grid, and tubes lying across the holes are examined in an electron microscope to deduce their atomic structures. Then the researchers use two needle-fine tips like tweezers to pick up a single tube under the microscope and put back down on another surface.

Chris Allen, one of the Leeds teams, says, "With this technique we can make carbon nanotube devices of a complexity that is not achievable by most other means."

Boosting computer power with superconductors

Two further talks at the meeting will describe an even more dramatic way to overcome the limitations of silicon computers. Hans Mooij of the Delft University of Technology in the Netherlands and Raymond Simmons of the National Institute of Standards and Technology in Boulder, Colorado, USA, will claim that superconductors - materials that conduct electricity with zero electrical resistance - can harness the power of quantum physics to boost computer power tremendously.

So-called quantum computers have become one of the hottest items in physics over the past decade. They attempt to improve on the power of silicon not by making components smaller but by exploiting the counterintuitive principles of quantum mechanics, the theory generally used to understand how objects behave at the scale of atoms and subatomic particles.

Objects governed by quantum theory can be in several different states at once, like a light switch being simultaneously ‘on' and ‘off'. These ‘superposition' states don't correspond to anything familiar from our everyday world, but countless experiments have proved that they can exist so long as the quantum objects are not disturbed by, for example, making a measurement on them.

In a quantum computer, the equivalent of ‘bits' that hold binary information as 1's and 0's in today's computers will be quantum bits or qubits, which can also exist as superpositions of 1's and 0's. This massively increases the amount of information that can be encoded in a quantum computer's memory. The catch is that superpositions are extremely delicate and hard to maintain, especially in memories containing large numbers of qubits that interact with one another.

Various candidates for making qubits are being explored, such as magnetically trapped atoms or nanometre-scale blobs of semiconductors. But it has long been recognized that loops of superconducting material can also be placed in quantum superposition states, and thus act as qubits. Here the quantum states may correspond to an electric current circulating round the ring in one direction or the other. (In superconductors this circulation can continue more or less indefinitely without petering out, because there is no electrical resistance.)

At the conference, Simmonds will describe the first demonstration of information being transmitted between two such superconducting qubits. This shows that elements of this kind can act as a quantum-computing memory and a "bus" for qubits to communicate with one another, an essential requirement of any working computer.

The two superconducting loops are made from thin wires of aluminium laid down on a slice of sapphire and cooled to less than 0.1 degrees of absolute zero to make them superconducting. They sit just a millimetre apart, but are connected by a meandering waveguide 7 mm long - a kind of light channel, like an optical fibre, but for microwaves. The superposition state of one qubit can be transferred into a microwave electrical vibration of the waveguide, like plucking a guitar string. This microwave "photon" of energy recording the first qubit's state can then be controllably transferred to the other qubit - crucially, without destroying these delicate quantum states.

Mooij was part of a group that first demonstrated in 2000 that such superconducting loops can be placed in quantum superposition states. He will describe the progress that he and others have made since then, both in making practical quantum devices and in using them to explore fundamental aspects of quantum mechanics, such as whether and how the ‘quantum weirdness' of superpositions can survive when the objects concerned get much larger than atoms.

Mooij says that one of the biggest challenges in making quantum computers this way is to progress from two to three qubits that communicate with each other. He says that the particular approach he and his colleagues have been developing has the advantage that, if this can be achieved, scaling up further won't be too difficult.

Mooij says, "With our qubit, once we have three set up we can move on to twenty or fifty."

####

For more information, please click here

Contacts:
Joe Winters

44-794-632-1473

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Using light to propel water : With new method, MIT engineers can control and separate fluids on a surface using only visible light April 25th, 2017

Physics

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

NIST physicists show ion pairs perform enhanced 'spooky action' March 30th, 2017

Breakthrough with a chain of gold atoms: In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport February 20th, 2017

Possible Futures

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

Nanoparticle vaccine shows potential as immunotherapy to fight multiple cancer types April 24th, 2017

Chip Technology

Geoffrey Beach: Drawn to explore magnetism: Materials researcher is working on the magnetic memory of the future April 25th, 2017

'Neuron-reading' nanowires could accelerate development of drugs for neurological diseases April 12th, 2017

Nanometrics to Announce First Quarter Financial Results on May 2, 2017 April 11th, 2017

AIM Photonics Presents Cutting-Edge Integrated Photonics Technology Developments to Packed House at OFC 2017, the Optical Networking and Communication Conference & Exhibition April 11th, 2017

Nanotubes/Buckyballs/Fullerenes

Nanotubes that build themselves April 14th, 2017

Intertronics introduce new nanoparticle deagglomeration technology March 15th, 2017

Boron atoms stretch out, gain new powers: Rice University simulations demonstrate 1-D material's stiffness, electrical versatility January 26th, 2017

New stem cell technique shows promise for bone repair January 25th, 2017

Quantum Computing

Harris & Harris Group Issues Its Financial Statements as of December 31, 2016, Posts Its Annual Shareholder Letter, And Will Host a Conference Call for Shareholders on Friday, March 17, 2017 March 15th, 2017

Sorting machine for atoms:Researchers at the University of Bonn clear a further hurdle on the path to creating quantum computers February 10th, 2017

First ever blueprint unveiled to construct a large scale quantum computer February 3rd, 2017

Chiral quantum optics: A new research field with bright perspectives January 31st, 2017

Announcements

Video captures bubble-blowing battery in action: Researchers propose how bubbles form, could lead to smaller lithium-air batteries April 26th, 2017

New Product Nanoparticle preparation from Intertronics with new Thinky NP-100 Nano Pulveriser April 26th, 2017

California Research Alliance by BASF establishes more than 25 research projects in three years April 26th, 2017

Affordable STM32 Cloud-Connectable Kit from STMicroelectronics Puts More Features On-Board for Fast and Flexible IoT-Device Development April 26th, 2017

Events/Classes

National Conference on Nanomaterials, (NCN-2017) April 21st, 2017

Nanomechanics, Inc. Unveils New Product at ICMCTF Show April 25th: Nanoindentation experts will launch the new Gemini that measures the interaction of two objects that are sliding across each other – not merely making contact April 21st, 2017

Forge Nano 2017: 1st Quarter Media Update April 20th, 2017

Arrowhead Presents ARC-520 and ARC-521 Clinical Data at The International Liver Congress(TM) April 20th, 2017

Quantum nanoscience

The speed limit for intra-chip communications in microprocessors of the future January 23rd, 2017

First experimental proof of a 70 year old physics theory: First observation of magnetic phase transition in 2-D materials, as predicted by the Nobel winner Onsager in 1943 January 6th, 2017

Quantum simulation technique yields topological soliton state in SSH model January 3rd, 2017

Diamonds are technologists' best friends: Researchers from the Lomonosov Moscow State University have grown needle- and thread-like diamonds and studied their useful properties December 30th, 2016

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project