Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > The future of computing -- carbon nanotubes and superconductors to replace the silicon chip

Abstract:
The future of computing is under the spotlight at the Institute of Physics' Condensed Matter and Materials Physics conference at the Royal Holloway College of the University of London on 26-28 March.

The future of computing -- carbon nanotubes and superconductors to replace the silicon chip

UK | Posted on March 27th, 2008



The end of the silicon chip

The silicon chip, which has supplied several decades' worth of remarkable increases in computing power and speed, looks unlikely to be capable of sustaining this pace for more than another decade - in fact, in a plenary talk at the conference, Suman Datta of Pennsylvania State University, USA, gives the conventional silicon chip no longer than four years left to run.

As silicon computer circuitry gets ever smaller in the quest to pack more components into smaller areas on a chip, eventually the miniaturized electronic devices are undermined by fundamental physical limits. They start to become leaky, making them incapable of holding onto digital information. So if the steady increases in computing capability that we have come to take for granted are to continue, some new technology will have to take over from silicon.

Replacing the chip with carbon nanotubes

At the conference, researchers at Leeds University in the UK will report an important step towards one prospective replacement. Carbon nanotubes, discovered in 1991, are tubes of pure carbon just a few nanometres wide - about the width of a typical protein molecule, and tens of thousands of times thinner than a human hair. Because they conduct electricity, they have been proposed as ready-made molecular-scale wires for making electronic circuitry.

Some nanotubes behave as semiconductors, like silicon; others carry electric currents like metal wires. Already, fundamental elements of computer circuits such as transistors have been made from individual carbon nanotubes.

But the problem is arranging nanotubes into circuit patterns. One particular difficulty is that they are typically made as mixtures of metallic and semiconducting tubes, whereas just one type or the other is needed for a specific component. These electrical properties depend on the precise arrangement of carbon atoms in the nanotube, but that's hard to determine for single tubes.

Bryan Hickey and his coworkers at Leeds have now developed a technique that will reveal an individual nanotube's structure (and thus its electrical properties), and then allow it to be placed in a position on a surface with an accuracy of about 100 nanometres, a fraction of the width of a human blood cell. The nanotubes are grown on a perforated ceramic grid, and tubes lying across the holes are examined in an electron microscope to deduce their atomic structures. Then the researchers use two needle-fine tips like tweezers to pick up a single tube under the microscope and put back down on another surface.

Chris Allen, one of the Leeds teams, says, "With this technique we can make carbon nanotube devices of a complexity that is not achievable by most other means."

Boosting computer power with superconductors

Two further talks at the meeting will describe an even more dramatic way to overcome the limitations of silicon computers. Hans Mooij of the Delft University of Technology in the Netherlands and Raymond Simmons of the National Institute of Standards and Technology in Boulder, Colorado, USA, will claim that superconductors - materials that conduct electricity with zero electrical resistance - can harness the power of quantum physics to boost computer power tremendously.

So-called quantum computers have become one of the hottest items in physics over the past decade. They attempt to improve on the power of silicon not by making components smaller but by exploiting the counterintuitive principles of quantum mechanics, the theory generally used to understand how objects behave at the scale of atoms and subatomic particles.

Objects governed by quantum theory can be in several different states at once, like a light switch being simultaneously ‘on' and ‘off'. These ‘superposition' states don't correspond to anything familiar from our everyday world, but countless experiments have proved that they can exist so long as the quantum objects are not disturbed by, for example, making a measurement on them.

In a quantum computer, the equivalent of ‘bits' that hold binary information as 1's and 0's in today's computers will be quantum bits or qubits, which can also exist as superpositions of 1's and 0's. This massively increases the amount of information that can be encoded in a quantum computer's memory. The catch is that superpositions are extremely delicate and hard to maintain, especially in memories containing large numbers of qubits that interact with one another.

Various candidates for making qubits are being explored, such as magnetically trapped atoms or nanometre-scale blobs of semiconductors. But it has long been recognized that loops of superconducting material can also be placed in quantum superposition states, and thus act as qubits. Here the quantum states may correspond to an electric current circulating round the ring in one direction or the other. (In superconductors this circulation can continue more or less indefinitely without petering out, because there is no electrical resistance.)

At the conference, Simmonds will describe the first demonstration of information being transmitted between two such superconducting qubits. This shows that elements of this kind can act as a quantum-computing memory and a "bus" for qubits to communicate with one another, an essential requirement of any working computer.

The two superconducting loops are made from thin wires of aluminium laid down on a slice of sapphire and cooled to less than 0.1 degrees of absolute zero to make them superconducting. They sit just a millimetre apart, but are connected by a meandering waveguide 7 mm long - a kind of light channel, like an optical fibre, but for microwaves. The superposition state of one qubit can be transferred into a microwave electrical vibration of the waveguide, like plucking a guitar string. This microwave "photon" of energy recording the first qubit's state can then be controllably transferred to the other qubit - crucially, without destroying these delicate quantum states.

Mooij was part of a group that first demonstrated in 2000 that such superconducting loops can be placed in quantum superposition states. He will describe the progress that he and others have made since then, both in making practical quantum devices and in using them to explore fundamental aspects of quantum mechanics, such as whether and how the ‘quantum weirdness' of superpositions can survive when the objects concerned get much larger than atoms.

Mooij says that one of the biggest challenges in making quantum computers this way is to progress from two to three qubits that communicate with each other. He says that the particular approach he and his colleagues have been developing has the advantage that, if this can be achieved, scaling up further won't be too difficult.

Mooij says, "With our qubit, once we have three set up we can move on to twenty or fifty."

####

For more information, please click here

Contacts:
Joe Winters

44-794-632-1473

Copyright © Institute of Physics

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Physics

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Nano-pea pod model widens electronics applications: A new theoretical model explains how a nanostructure, such as the nano-pea pod, can exhibit localised electrons September 4th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

Possible Futures

Air Force’s 30-year plan seeks 'strategic agility' August 1st, 2014

IBM Announces $3 Billion Research Initiative to Tackle Chip Grand Challenges for Cloud and Big Data Systems: Scientists and engineers to push limits of silicon technology to 7 nanometers and below and create post-silicon future July 10th, 2014

Virus structure inspires novel understanding of onion-like carbon nanoparticles April 10th, 2014

Local girl does good March 22nd, 2014

Chip Technology

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Researchers Create World’s Largest DNA Origami September 11th, 2014

Nanotubes/Buckyballs

Scientists refine formula for nanotube types: Rice University theorists determine factors that give tubes their chiral angles September 17th, 2014

‘Small’ transformation yields big changes September 16th, 2014

Rice rolls 'neat' nanotube fibers: Rice University researchers' acid-free approach leads to strong conductive carbon threads September 15th, 2014

Berkeley Lab Licenses Boron Nitride Nanotube Technology: New material has unique mechanical and electronic properties September 13th, 2014

Quantum Computing

Excitonic Dark States Shed Light on TMDC Atomic Layers: Berkeley Lab Discovery Holds Promise for Nanoelectronic and Photonic Applications September 11th, 2014

Secure Computing for the ‘Everyman': Quantum computing goes to market in tech transfer agreement with Allied Minds September 2nd, 2014

New synthesis method may shape future of nanostructures, clean energy: Findings advance efficient solar spliting of water into hydrogen fuel September 2nd, 2014

A new, tunable device for spintronics: An international team of scientists including physicist Jairo Sinova from the University of Mainz realises a tunable spin-charge converter made of GaAs August 29th, 2014

Announcements

Wear-resistant ceramic powder maximises component lifespan in high-stress applications: Innovnano’s nanostructured 3YSZ offers improved tribological performance for manufacturing components September 18th, 2014

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

FEI Opens New Technology Center in Czech Republic: FEI expands its presence in Brno with the opening of a new, larger facility September 18th, 2014

Biosensors Get a Boost from Graphene Partnership: $5 Million Investment Supports Dozens of Jobs and Development of 300mm Fabrication Process and Wafer Transfer Facility September 18th, 2014

Events/Classes

IEEE International Electron Devices Meeting To Celebrate 60th Anniversary as The Leading Technical Conference for Advanced Semiconductor Devices September 18th, 2014

PEN Inc. Chairman, Scott Rickert, Will Webcast a Live Company Update September 25, 1 PM EDT September 17th, 2014

Dolomite to launch Meros TCU-100 temperature controller at Lab-on-a-Chip & Microarray World Congress September 15th, 2014

Seeking Nanoscale Defenses for Biological and Chemical Threats: WPI co-organizes a NATO workshop to improve the detection and decontamination of biological and chemical agents September 13th, 2014

Quantum nanoscience

Elusive Quantum Transformations Found Near Absolute Zero: Brookhaven Lab and Stony Brook University researchers measured the quantum fluctuations behind a novel magnetic material's ultra-cold ferromagnetic phase transition September 15th, 2014

Layered graphene sandwich for next generation electronics September 8th, 2014

Cool Calculations for Cold Atoms: New theory of universal three-body encounters September 2nd, 2014

New technique uses fraction of measurements to efficiently find quantum wave functions August 28th, 2014

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More














ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE