Nanotechnology Now







Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Nanomedicine System Engineered To Enhance Therapeutic Effects of Injectable Drugs

Abstract:
In an article featured on the cover of the March issue of Nature Nanotechnology, Mauro Ferrari, Ph.D., of The University of Texas Health Science Center at Houston, presented a proof-of-concept study on a new multistage delivery system (MDS) for imaging and therapeutic applications. This discovery could go a long way toward making injectable drugs more effective.

Nanomedicine System Engineered To Enhance Therapeutic Effects of Injectable Drugs

Bethesda , MD | Posted on March 27th, 2008

"This is next-generation nanomedicine," said Ferrari, who played a critical role in the development of the National Cancer Institute's (NCI) Alliance for Nanotechnology in Cancer. "Now we're engineering sophisticated nanostructures to elude the body's natural defenses, locate tumors and other diseased cells, and release a payload of therapeutics, contrasting agents, or both over a controlled period."

Nanotechnology offers new and powerful tools to design and engineer novel drug delivery systems and to predict how they will work once inside the body. "The field of therapeutic nanoparticles began with tiny drug-encapsulated fat bubbles called liposomes, now commonly used in cancer clinics worldwide. Targeting molecules were later added to liposomes and other nanovectors to assist in directing them to diseased cells," Ferrari said.

Getting intravenous agents to their intended targets is no easy task. It is estimated that approximately 1 of every 100,000 molecules of agent reaches its desired destination. Physicians are faced with the quandary of increasing the dosage, which can lead to side effects, or reducing the dosage, which can limit the therapeutic benefits.

The multistage approach, according to Ferrari, is needed to circumvent the body's natural defenses or biobarriers, which act as obstacles to foreign objects injected in the bloodstream. "To overcome this problem, we hypothesized and developed a multifunctional MDS comprising stage 1 mesoporous particles loaded with one or more types of stage 2 nanoparticles, which in turn can carry either active agents or higher stage particles. We have demonstrated the loading, controlled release, and simultaneous in vitro delivery of quantum dots and carbon nanotubes to human vascular cells," said Ferrari.

In addition to circumventing biobarriers, Ferrari's team is working on the biochemical modifications required to efficiently deliver the MDS to a specific cancer lesion. "We have preliminary data that show that we can localize a payload of diagnostic agents, therapeutic agents, or combination of both to target cells. Once on site, the molecules can be released in a controlled way, and then the MDS will degrade in 24 to 48 hours, be transformed into orthosilicic acid, and leave no trace in the body," Ferrari said.

One of Ferrari's coauthors, Ennio Tasciotti, Ph.D., said the proof-of-concept study would not have been possible without a multidisciplinary effort that included contributions from mathematicians, physicists, engineers, chemists, and biologists. "We are dealing with objects that are in the billionth of a meter size range, and to study such objects we used cutting-edge technologies," Tasciotti said. "The characterization of the particles was performed using scanning electron and atomic force microscopy, dynamic light scattering, fluorimetry, and flow cytometry. The interaction of particles with cells was studied using fluorescence and confocal microscopy as well as a series of assays intended to determine cell viability and internalization rate of the nanoparticles."

This work, which was supported in part by the NCI, is detailed the paper "Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications." Investigators from The University of Texas M. D. Anderson Cancer Center and Rice University also participated in this study. An abstract of this paper is available at the journal's Web site.

####

About National Cancer Institute
To help meet the goal of reducing the burden of cancer, the National Cancer Institute (NCI), part of the National Institutes of Health, is engaged in efforts to harness the power of nanotechnology to radically change the way we diagnose, treat and prevent cancer.

The NCI Alliance for Nanotechnology in Cancer is a comprehensive, systematized initiative encompassing the public and private sectors, designed to accelerate the application of the best capabilities of nanotechnology to cancer.

Currently, scientists are limited in their ability to turn promising molecular discoveries into benefits for cancer patients. Nanotechnology can provide the technical power and tools that will enable those developing new diagnostics, therapeutics, and preventives to keep pace with today’s explosion in knowledge.

For more information, please click here

Contacts:


National Cancer Institute
Office of Technology & Industrial Relations
ATTN: NCI Alliance for Nanotechnology in Cancer
Building 31, Room 10A49
31 Center Drive , MSC 2580
Bethesda , MD 20892-2580

Copyright © National Cancer Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related Links

View Abstract

Related News Press

News and information

Mass spectrometers with optimised hydrogen pumping March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Nanomedicine

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Novel Method to Determine Optical Purity of Drug Components March 1st, 2015

Untangling DNA with a droplet of water, a pipet and a polymer: With the 'rolling droplet technique,' a DNA-injected water droplet rolls like a ball over a platelet, sticking the DNA to the plate surface February 27th, 2015

Graphene shows potential as novel anti-cancer therapeutic strategy: University of Manchester scientists have used graphene to target and neutralise cancer stem cells while not harming other cells February 26th, 2015

Discoveries

Imec, Holst Centre and Renesas Present World’s Lowest Power 2.4GHz Radio Chip for Bluetooth Low Energy March 1st, 2015

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

Announcements

Imec, Murata, and Huawei Introduce Breakthrough Solution for TX-to-RX Isolation in Reconfigurable, Multiband Front-End Modules for Mobile Phones: Electrical-Balance Duplexers Pave the Way to Integrated Solution for TX-to-RX Isolation March 1st, 2015

Imec Demonstrates Compact Wavelength-Division Multiplexing CMOS Silicon Photonics Transceiver March 1st, 2015

onic Present breakthrough in CMOS-based Transceivers for mm-Wave Radar Systems March 1st, 2015

Graphene Shows Promise In Eradication Of Stem Cancer Cells March 1st, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2015 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE