Nanotechnology Now

Our NanoNews Digest Sponsors



Heifer International

Wikipedia Affiliate Button


android tablet pc

Home > Press > Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

Abstract:
DARPA Project Advances Chip Communications Via Proximity and Optical Connections to Create Potential for Virtual Supercomputer from Network of Low-Cost Chips

Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

SANTA CLARA, CA | Posted on March 24th, 2008

Sun Microsystems, Inc. (NASDAQ: JAVA) today announced that the Defense Advanced Research Projects Agency (DARPA) has awarded Sun $44.29 million funding for a five and a half-year research project focused on microchip interconnectivity via on-chip optical networks enabled by Silicon photonics and proximity communication. Part of DARPA's Ultraperformance Nanophotonic Intrachip Communication program, the project commences with an incremental delivery of $8.1 million to Sun Microsystems' Microelectronics and Laboratories divisions. For more information on research projects at Sun, visit http://www.research.sun.com.

Building on research done under DARPA's High Productivity Computing Systems program, Sun's new project will accelerate the development of lower cost, high performance and high productivity systems. The project presents a unique opportunity to develop supercomputers through interconnecting an array of low-cost chips, with the potential to overcome the fundamental cost and performance limits of scaling up today's large computer systems. By providing unprecedented high bandwidth, low latency, and low power interconnections between the parallel computing chips in such an array, this research project will help enable a broad class of companies and organizations to utilize applications with high compute and communication requirements, such as energy exploration, biotechnology and weather modeling.

"Optical communications could be a truly game-changing technology—an elegant way to continue impressive performance gains while completely changing the economics of large-scale silicon production," said Greg Papadopoulos, chief technology officer and executive vice president of research and development for Sun. "Congratulations to Sun Labs and Microelectronics teams for their constructive creativity and for driving innovation into the semiconductor marketplace."

Sun's program combines optical signaling with Proximity Communication, its key chip-to-chip I/O technology, to construct arrays of low-cost chips in a single virtual "macrochip." Such an aggregation of inexpensive chips looks and performs like a single chip of enormous size, thus extending Moore's Law; it also avoids soldered chip connections to enable lower total system cost. Long connections across the macrochip leverage the low latency, high bandwidth, and low power of silicon optics, and through this program Sun and DARPA will research technologies to dramatically further reduce the cost of these optical connections. The result is a virtual supercomputer.

"DARPA's UNIC (Ultraperformance Nanophotonic Intrachip Communications) program will demonstrate high performance photonic technology for high bandwidth, on-chip, photonic communications networks for advanced (≥ 10 trillion operations/second) microprocessors. By restoring the balance between computation and communications, the program will significantly enhance DoD's capabilities for applications such as Image Processing, Autonomous Operations, Synthetic Aperture Radar, as well as supercomputing," said Dr. Jag Shah, program manager in DARPA's Microsystems Technology Office.

Accelerating Innovation to Extend Moore's Law

The historic accuracy of Moore's Law, which predicts a periodic doubling of the number of transistors that can cost-effectively build on a single chip, is partly behind the impressive growth of microprocessor performance over the last 30 years. Today, though, continued improvements are slowing down, as power and size constraints limit the growth of chip clock frequencies. Boosting computer performance by accumulating hundreds or thousands of cores per chip allows users to exploit massively parallel execution, but it also requires large increases in the number of transistors on a chip, and hence an unconstrained continuation of Moore's Law. However, as Dr. Gordon Moore himself predicted long ago, economic limits on the global financial investment in semiconductors are now slowing down Moore's Law.

####

About Sun Microsystems, Inc.
Sun Microsystems develops the technologies that power the global marketplace. Guided by a singular vision -- "The Network is the Computer" -- Sun drives network participation through shared innovation, community development and open source leadership.

For more information, please click here

Contacts:
Karen Kahn
VP, Global Communications
415-294-5362

Copyright © Sun Microsystems, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Govt.-Legislation/Regulation/Funding/Policy

Zenosense, Inc. - Hospital Collaboration - 400 Person Lung Cancer Detection Trial December 17th, 2014

SUNY Poly NanoCollege Faculty Member Selected as American Physical Society Fellow: SUNY Poly Associate Professor of Nanoscience Dr. Vincent LaBella Recognized for Significant Technological Innovations that Enable Interactive Learning December 17th, 2014

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

ORNL microscopy pencils patterns in polymers at the nanoscale December 17th, 2014

Chip Technology

Switching to spintronics: Berkeley Lab reports on electric field switching of ferromagnetism at room temp December 17th, 2014

Pb islands in a sea of graphene magnetise the material of the future December 16th, 2014

Stanford team combines logic, memory to build a 'high-rise' chip: Today circuit cards are laid out like single-story towns; Futuristic architecture builds layers of logic and memory into skyscraper chips that would be smaller, faster, cheaper -- and taller December 15th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Optical computing/ Photonic computing

High photosensitivity 2D-few-layered molybdenum diselenide phototransistors December 8th, 2014

Graphene layer reads optical information from nanodiamonds electronically: Possible read head for quantum computers December 1st, 2014

Penn engineers efficiently 'mix' light at the nanoscale November 17th, 2014

Nanoparticles Break the Symmetry of Light October 6th, 2014

Announcements

Creation of 'Rocker' protein opens way for new smart molecules in medicine, other fields December 18th, 2014

How does enzymatic pretreatment affect the nanostructure and reaction space of lignocellulosic biomass? December 18th, 2014

Silicon Valley-Based Foresight Valuation Launches STR-IP™, a New Initiative for Startups to Discover the Value of Their Intellectual Property December 18th, 2014

Iranian Scientists Use Nanotechnology to Increase Power, Energy of Supercapacitors December 18th, 2014

Military

UCLA engineers first to detect and measure individual DNA molecules using smartphone microscope December 15th, 2014

Nanoshaping method points to future manufacturing technology December 11th, 2014

Stacking two-dimensional materials may lower cost of semiconductor devices December 11th, 2014

Industrial Nanotech, Inc. Expands Government and Defense Projects December 10th, 2014

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project







© Copyright 1999-2014 7th Wave, Inc. All Rights Reserved PRIVACY POLICY :: CONTACT US :: STATS :: SITE MAP :: ADVERTISE