Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

Abstract:
DARPA Project Advances Chip Communications Via Proximity and Optical Connections to Create Potential for Virtual Supercomputer from Network of Low-Cost Chips

Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

SANTA CLARA, CA | Posted on March 24th, 2008

Sun Microsystems, Inc. (NASDAQ: JAVA) today announced that the Defense Advanced Research Projects Agency (DARPA) has awarded Sun $44.29 million funding for a five and a half-year research project focused on microchip interconnectivity via on-chip optical networks enabled by Silicon photonics and proximity communication. Part of DARPA's Ultraperformance Nanophotonic Intrachip Communication program, the project commences with an incremental delivery of $8.1 million to Sun Microsystems' Microelectronics and Laboratories divisions. For more information on research projects at Sun, visit http://www.research.sun.com.

Building on research done under DARPA's High Productivity Computing Systems program, Sun's new project will accelerate the development of lower cost, high performance and high productivity systems. The project presents a unique opportunity to develop supercomputers through interconnecting an array of low-cost chips, with the potential to overcome the fundamental cost and performance limits of scaling up today's large computer systems. By providing unprecedented high bandwidth, low latency, and low power interconnections between the parallel computing chips in such an array, this research project will help enable a broad class of companies and organizations to utilize applications with high compute and communication requirements, such as energy exploration, biotechnology and weather modeling.

"Optical communications could be a truly game-changing technology—an elegant way to continue impressive performance gains while completely changing the economics of large-scale silicon production," said Greg Papadopoulos, chief technology officer and executive vice president of research and development for Sun. "Congratulations to Sun Labs and Microelectronics teams for their constructive creativity and for driving innovation into the semiconductor marketplace."

Sun's program combines optical signaling with Proximity Communication, its key chip-to-chip I/O technology, to construct arrays of low-cost chips in a single virtual "macrochip." Such an aggregation of inexpensive chips looks and performs like a single chip of enormous size, thus extending Moore's Law; it also avoids soldered chip connections to enable lower total system cost. Long connections across the macrochip leverage the low latency, high bandwidth, and low power of silicon optics, and through this program Sun and DARPA will research technologies to dramatically further reduce the cost of these optical connections. The result is a virtual supercomputer.

"DARPA's UNIC (Ultraperformance Nanophotonic Intrachip Communications) program will demonstrate high performance photonic technology for high bandwidth, on-chip, photonic communications networks for advanced (≥ 10 trillion operations/second) microprocessors. By restoring the balance between computation and communications, the program will significantly enhance DoD's capabilities for applications such as Image Processing, Autonomous Operations, Synthetic Aperture Radar, as well as supercomputing," said Dr. Jag Shah, program manager in DARPA's Microsystems Technology Office.

Accelerating Innovation to Extend Moore's Law

The historic accuracy of Moore's Law, which predicts a periodic doubling of the number of transistors that can cost-effectively build on a single chip, is partly behind the impressive growth of microprocessor performance over the last 30 years. Today, though, continued improvements are slowing down, as power and size constraints limit the growth of chip clock frequencies. Boosting computer performance by accumulating hundreds or thousands of cores per chip allows users to exploit massively parallel execution, but it also requires large increases in the number of transistors on a chip, and hence an unconstrained continuation of Moore's Law. However, as Dr. Gordon Moore himself predicted long ago, economic limits on the global financial investment in semiconductors are now slowing down Moore's Law.

####

About Sun Microsystems, Inc.
Sun Microsystems develops the technologies that power the global marketplace. Guided by a singular vision -- "The Network is the Computer" -- Sun drives network participation through shared innovation, community development and open source leadership.

For more information, please click here

Contacts:
Karen Kahn
VP, Global Communications
415-294-5362

Copyright © Sun Microsystems, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Simulations predict flat liquid May 21st, 2015

Govt.-Legislation/Regulation/Funding/Policy

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Turn that defect upside down: Twin boundaries in lithium-ion batteries May 21st, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

SUNY Poly CNSE and NIOSH Launch Federal Nano Health and Safety Consortium: May 20th, 2015

Chip Technology

Nanometrics Announces Live Webcast of Upcoming Investor and Analyst Day May 20th, 2015

Sandia researchers first to measure thermoelectric behavior by 'Tinkertoy' materials May 20th, 2015

Defects can 'Hulk-up' materials: Berkeley lab study shows properly managed damage can boost material thermoelectric performances May 20th, 2015

GLOBALFOUNDRIES Offers New Low-Power 28nm Solution for High-Performance Mobile and IoT Applications: Technology is the first in the industry to provide design enablement support optimized to meet low power requirements of RF SoCs May 20th, 2015

Optical computing/ Photonic computing

Computing at the speed of light: Utah engineers take big step toward much faster computers May 18th, 2015

Electrons corralled using new quantum tool: 'Whispering gallery' effect confines electrons, could provide basis for new electron-optics devices May 7th, 2015

Putting a new spin on plasmonics: Researchers at Aalto University have discovered a novel way of combining plasmonic and magneto-optical effects May 7th, 2015

Rice scientists use light to probe acoustic tuning in gold nanodisks: Rice University experts demonstrate new method for optomechanical tuning May 7th, 2015

Announcements

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

INSIDDE: Uncovering the real history of art using a graphene scanner May 21st, 2015

Military

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

Nanotherapy effective in mice with multiple myeloma May 21st, 2015

Taking control of light emission: Researchers find a way of tuning light waves by pairing 2 exotic 2-D materials May 20th, 2015

Wearables may get boost from boron-infused graphene: Rice U. researchers flex muscle of laser-written microsupercapacitors May 18th, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project