Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

Abstract:
DARPA Project Advances Chip Communications Via Proximity and Optical Connections to Create Potential for Virtual Supercomputer from Network of Low-Cost Chips

Sun Microsystems Awarded $44 Million Department of Defense Contract to Develop Microchip Interconnect System

SANTA CLARA, CA | Posted on March 24th, 2008

Sun Microsystems, Inc. (NASDAQ: JAVA) today announced that the Defense Advanced Research Projects Agency (DARPA) has awarded Sun $44.29 million funding for a five and a half-year research project focused on microchip interconnectivity via on-chip optical networks enabled by Silicon photonics and proximity communication. Part of DARPA's Ultraperformance Nanophotonic Intrachip Communication program, the project commences with an incremental delivery of $8.1 million to Sun Microsystems' Microelectronics and Laboratories divisions. For more information on research projects at Sun, visit http://www.research.sun.com.

Building on research done under DARPA's High Productivity Computing Systems program, Sun's new project will accelerate the development of lower cost, high performance and high productivity systems. The project presents a unique opportunity to develop supercomputers through interconnecting an array of low-cost chips, with the potential to overcome the fundamental cost and performance limits of scaling up today's large computer systems. By providing unprecedented high bandwidth, low latency, and low power interconnections between the parallel computing chips in such an array, this research project will help enable a broad class of companies and organizations to utilize applications with high compute and communication requirements, such as energy exploration, biotechnology and weather modeling.

"Optical communications could be a truly game-changing technology—an elegant way to continue impressive performance gains while completely changing the economics of large-scale silicon production," said Greg Papadopoulos, chief technology officer and executive vice president of research and development for Sun. "Congratulations to Sun Labs and Microelectronics teams for their constructive creativity and for driving innovation into the semiconductor marketplace."

Sun's program combines optical signaling with Proximity Communication, its key chip-to-chip I/O technology, to construct arrays of low-cost chips in a single virtual "macrochip." Such an aggregation of inexpensive chips looks and performs like a single chip of enormous size, thus extending Moore's Law; it also avoids soldered chip connections to enable lower total system cost. Long connections across the macrochip leverage the low latency, high bandwidth, and low power of silicon optics, and through this program Sun and DARPA will research technologies to dramatically further reduce the cost of these optical connections. The result is a virtual supercomputer.

"DARPA's UNIC (Ultraperformance Nanophotonic Intrachip Communications) program will demonstrate high performance photonic technology for high bandwidth, on-chip, photonic communications networks for advanced (≥ 10 trillion operations/second) microprocessors. By restoring the balance between computation and communications, the program will significantly enhance DoD's capabilities for applications such as Image Processing, Autonomous Operations, Synthetic Aperture Radar, as well as supercomputing," said Dr. Jag Shah, program manager in DARPA's Microsystems Technology Office.

Accelerating Innovation to Extend Moore's Law

The historic accuracy of Moore's Law, which predicts a periodic doubling of the number of transistors that can cost-effectively build on a single chip, is partly behind the impressive growth of microprocessor performance over the last 30 years. Today, though, continued improvements are slowing down, as power and size constraints limit the growth of chip clock frequencies. Boosting computer performance by accumulating hundreds or thousands of cores per chip allows users to exploit massively parallel execution, but it also requires large increases in the number of transistors on a chip, and hence an unconstrained continuation of Moore's Law. However, as Dr. Gordon Moore himself predicted long ago, economic limits on the global financial investment in semiconductors are now slowing down Moore's Law.

####

About Sun Microsystems, Inc.
Sun Microsystems develops the technologies that power the global marketplace. Guided by a singular vision -- "The Network is the Computer" -- Sun drives network participation through shared innovation, community development and open source leadership.

For more information, please click here

Contacts:
Karen Kahn
VP, Global Communications
415-294-5362

Copyright © Sun Microsystems, Inc.

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Arrowhead Pharmaceuticals to Webcast Fiscal 2017 Third Quarter Results July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Getting closer to porous, light-responsive materials: A new flexible material changes its porous nature when exposed to light July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Govt.-Legislation/Regulation/Funding/Policy

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

Graduate Students from Across the Country Attend Hands-on NanoCamp: Prominent scientists Warren Oliver, Ph.D., and George Pharr, Ph.D., presented a weeklong NanoCamp for hand-picked graduate students across the United States July 26th, 2017

Ultrathin device harvests electricity from human motion July 23rd, 2017

Chip Technology

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Strange electrons break the crystal symmetry of high-temperature superconductors: Brookhaven Lab scientists discover spontaneous voltage perpendicular to applied current that may help unravel the mystery of high-temperature superconductors July 27th, 2017

First Capacitive Transducer with 13nm Gap July 27th, 2017

Living computers: RNA circuits transform cells into nanodevices July 27th, 2017

Optical computing/Photonic computing

Scientists announce the quest for high-index materials: All-dielectric nanophotonics: The quest for better materials and fabrication techniques July 22nd, 2017

A firefly's flash inspires new nanolaser light July 18th, 2017

Giant enhancement of electromagnetic waves revealed within small dielectric particles: Scientists have done for the first time direct measurements of giant electromagnetic fields July 8th, 2017

Atomic imperfections move quantum communication network closer to reality June 25th, 2017

Announcements

Rice U. scientists map ways forward for lithium-ion batteries for extreme environments: Paper details developments toward high-temperature batteries July 27th, 2017

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Atomic discovery opens door to greener, faster, smaller electronic circuitry: Scientists find way to correct communication pathways in silicon chips, making them perfect July 27th, 2017

Physicists gain new insights into nanosystems with spherical confinement: Enormous potential for the targeted delivery of pharmaceutical agents and the creation of tailored nanoparticles July 27th, 2017

Military

Ultracold molecules hold promise for quantum computing: New approach yields long-lasting configurations that could provide long-sought “qubit” material July 27th, 2017

Nanoparticles could spur better LEDs, invisibility cloaks July 19th, 2017

'Upconverted' light has a bright future: Rice University professor developing plasmon-powered devices for medicine, security, solar cells July 17th, 2017

Nature-inspired material uses liquid reinforcement: Rice U. nanoengineers create liquid-solid composites using clues from nature July 11th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project