Nanotechnology Now

Our NanoNews Digest Sponsors

Heifer International

Wikipedia Affiliate Button

Home > Press > Tiny buckyballs squeeze hydrogen like giant Jupiter

Abstract:
Research featured on the March cover of Nano Letters finds that tiny carbon capsules called buckyballs are strong enough to hold volumes of hydrogen nearly as dense as those found at the center of Jupiter. Using a computer model, materials scientists at Rice University found some buckyballs were capable of holding hydrogen volumes so dense as to be almost metallic.

Tiny buckyballs squeeze hydrogen like giant Jupiter

Houston, TX | Posted on March 20th, 2008

Carbon cages can hold super-dense volumes of nearly metallic hydrogen

Hydrogen could be a clean, abundant energy source, but it's difficult to store in bulk. In new research, materials scientists at Rice University have made the surprising discovery that tiny carbon capsules called buckyballs are so strong they can hold volumes of hydrogen nearly as dense as those at the center of Jupiter.

The research appears on the March 2008 cover of the American Chemical Society's journal Nano Letters.

"Based on our calculations, it appears that some buckyballs are capable of holding volumes of hydrogen so dense as to be almost metallic," said lead researcher Boris Yakobson, professor of mechanical engineering and materials science at Rice. "It appears they can hold about 8 percent of their weight in hydrogen at room temperature, which is considerably better than the federal target of 6 percent."

The Department of Energy has devoted more than $1 billion to developing technologies for hydrogen-powered automobiles, including technologies to cost-effectively store hydrogen for use in cars. Hydrogen is the lightest element in the universe, and it is very difficult to store in bulk. For hydrogen cars to be competitive with gasoline-powered cars, they need a comparable range and a reasonably compact fuel system. It's estimated that a hydrogen-powered car with a suitable range will require a storage system with densities greater than those found in pure, liquid hydrogen.

Yakobson said scientists have long argued the merits of storing hydrogen in tiny, molecular containers like buckyballs, and experiments have shown that it's possible to store small volumes of hydrogen inside buckyballs. The new research by Yakobson and former postdoctoral researchers Olga Pupysheva and Amir Farajian offers the first method of precisely calculating how much hydrogen a buckyball can hold before breaking.

Buckyballs, which were discovered at Rice more than 20 years ago, are part of a family of carbon molecules called fullerenes. The family includes carbon nanotubes, the typical 60-atom buckyball and larger buckyballs composed of 2,000 or more atoms.

"Bonds between carbon atoms are among the strongest chemical bonds in nature," Yakobson said. "These bonds are what make diamond the hardest known substance, and our research showed that it takes an enormous amount of internal pressure to deform and break the carbon-carbon bonds in a fullerene."

Using a computer model, Yakobson's research team has tracked the strength of each atomic bond in a buckyball and simulated what happened to the bonds as more hydrogen atoms were packed inside. Yakobson said the model promises to be particularly useful because it is scalable, that is it can calculate exactly how much hydrogen a buckyball of any given size can hold, and it can also tell scientists how overstuffed buckyballs burst open and release their cargo.

If a feasible way to produce hydrogen-filled buckyballs is developed, Yakobson said, it might be possible to store them as a powder.

"They will likely assemble into weak molecular crystals or form a thin powder," he said. "They might find use in their whole form or be punctured under certain conditions to release pure hydrogen for fuel cells or other types of engines."

The research was supported by the Office of Naval Research and the Department of Energy.

####

About Rice University
Rice University is consistently ranked one of America’s best teaching and research universities. It is distinguished by its: size—2,850 undergraduates and 1,950 graduate students; selectivity—10 applicants for each place in the freshman class; resources—an undergraduate student-to-faculty ratio of 6-to-1, and the fifth largest endowment per student among American universities; residential college system, which builds communities that are both close-knit and diverse; and collaborative culture, which crosses disciplines, integrates teaching and research, and intermingles undergraduate and graduate work. Rice’s wooded campus is located in the nation’s fourth largest city and on America’s South Coast.

For more information, please click here

Contacts:
Jade Boyd
713-348-6778

Copyright © Rice University

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Discoveries

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Announcements

Application of air-sensitive semiconductors in nanoelectronics: 2-D semiconductor gallium selenide in encapsulated nanoelectronic devices September 22nd, 2017

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

DNA triggers shape-shifting in hydrogels, opening a new way to make 'soft robots' September 21st, 2017

Physicists develop new recipes for design of fast single-photon gun Physicists develop high-speed single-photon sources for quantum computers of the future September 21st, 2017

Energy

Researchers set time limit for ultrafast perovskite solar cells September 22nd, 2017

Copper catalyst yields high efficiency CO2-to-fuels conversion: Berkeley Lab scientists discover critical role of nanoparticle transformation September 20th, 2017

Solar-to-fuel system recycles CO2 to make ethanol and ethylene: Berkeley Lab advance is first demonstration of efficient, light-powered production of fuel via artificial photosynthesis September 19th, 2017

Insect eyes inspire new solar cell design from Stanford August 31st, 2017

Fuel Cells

Hydrogen power moves a step closer: Physicists are developing methods of creating renewable fuel from water using quantum technology September 15th, 2017

More durable, less expensive fuel cells: University of Delaware researchers have developed a new technology that could speed up the commercialization of fuel cell vehicles September 5th, 2017

Engineers pioneer platinum shell formation process – and achieve first-ever observation August 11th, 2017

Argonne National Laboratory’s Continuous ALD Technology Licensed Exclusively to Forge Nano July 7th, 2017

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project