Nanotechnology Now





Heifer International

Wikipedia Affiliate Button


DHgate

Home > News > Formulating challenge: Creating better epoxies for vacuum-infused aerospace parts

March 17th, 2008

Formulating challenge: Creating better epoxies for vacuum-infused aerospace parts

Abstract:
More attention is being focused on fabricating processes for aircraft structures that can save time and money and improve efficiency while yielding high-quality parts. Historically, nearly all aircraft designers have assumed autoclave cure as the norm, despite the well-documented cost and time advantages of out-of-autoclave processing. The formulation of epoxy-based resin systems that can be used to vacuum infuse dry fibers or preforms holds great promise for producing large, complex composite parts with less than 1 percent void content and controllable resin/fiber ratio. Vacuum infusion permits the use of inexpensive "soft" tooling and ambient/near-ambient curing to reduce autoclave processing costs and save energy.

A key to formulating one- and two-part epoxy resin systems for aerospace vacuum infusion is balancing viscosity with in-service performance. Huntsman Advanced Materials (The Woodlands, Texas), a pioneer with its trademarked RenInfusion epoxies for infusion processes, has found that through the use of nano-based toughening agents, new-generation infusion epoxies can be produced with physical property combinations that once were apparently diametrically opposed. For example, epoxy formulations have been developed that can be infused at temperatures less than 120F (49C) for two-part systems, and 180F (83C) for one-part systems, says Huntsman senior chemist Jim Hoge, delivering adequate pot life, a high glass transition temperature (Tg), and good toughness with high modulus. System dry Tg's are in the 280F to 350F (138C - 177C) range.

Source:
compositesworld.com

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Discoveries

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

Conversion of Greenhouse Gases to Syngas in Presence of Nanocatalysts in Iran May 22nd, 2015

Materials/Metamaterials

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Haydale Named Lead Sponsor for Cambridge Graphene Festival May 22nd, 2015

Supercomputer unlocks secrets of plant cells to pave the way for more resilient crops: IBM partners with University of Melbourne and UQ May 21st, 2015

Researchers develop new way to manufacture nanofibers May 21st, 2015

Announcements

Basel physicists develop efficient method of signal transmission from nanocomponents May 23rd, 2015

This Slinky lookalike 'hyperlens' helps us see tiny objects: The photonics advancement could improve early cancer detection, nanoelectronics manufacturing and scientists' ability to observe single molecules May 23rd, 2015

Visualizing How Radiation Bombardment Boosts Superconductivity: Atomic-level flyovers show how impact sites of high-energy ions pin potentially disruptive vortices to keep high-current superconductivity flowing May 23rd, 2015

New Antibacterial Wound Dressing in Iran Can Display Replacement Time May 22nd, 2015

NanoNews-Digest
The latest news from around the world, FREE




  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More










ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project