Nanotechnology Now

Our NanoNews Digest Sponsors





Heifer International

Wikipedia Affiliate Button


DHgate

Home > Press > Carbon Nanotubes Outperform Copper Nanowires as Interconnects

Abstract:
Scientists create robust quantum models to compare key characteristics of copper and CNTs

Carbon Nanotubes Outperform Copper Nanowires as Interconnects

Troy, NY | Posted on March 13th, 2008

Researchers at Rensselaer Polytechnic Institute have created a road map that brings academia and the semiconductor industry one step closer to realizing carbon nanotube interconnects, and alleviating the current bottleneck of information flow that is limiting the potential of computer chips in everything from personal computers to portable music players.

To better understand and more precisely measure the key characteristics of both copper nanowires and carbon nanotube bundles, the researchers used advanced quantum-mechanical computer modeling to run vast simulations on a high-powered supercomputer. It is the first such study to examine copper nanowire using quantum mechanics rather than empirical laws.

After crunching numbers for months with the help of Rensselaer's Computational Center for Nanotechnology Innovations, the most powerful university-based supercomputer in the world, the research team concluded that the carbon nanotube bundles boasted a much smaller electrical resistance than the copper nanowires. This lower resistance suggests carbon nanotube bundles would therefore be better suited for interconnect applications.

"With this study, we have provided a road map for accurately comparing the performance of copper wire and carbon nanotube wire," said Saroj Nayak, an associate professor in Rensselaer's Department of Department of Physics, Applied Physics, and Astronomy, who led the research team. "Given the data we collected, we believe that carbon nanotubes at 45 nanometers will outperform copper nanowire."

The research results will be featured in the March issue of Journal of Physics: Condensed Matter.

Because of the nanoscale size of interconnects, they are subject to quantum phenomena that are not apparent and not visible at the macroscale, Nayak said. Empirical and semi-classical laws cannot account for such phenomena that take place on the atomic and subatomic level, and, as a result, models and simulations based on those models cannot be used to accurately predict the behavior and performance of copper nanowire. Using quantum mechanics, which deals with physics at the atomic level, is more difficult but allows for a fuller, more accurate model.

"If you go to the nanoscale, objects do not behave as they do at the macroscale," Nayak said. "Looking forward to the future of computers, it is essential that we solve problems with quantum mechanics to obtain the most complete, reliable data possible."

The size of computer chips has shrunk dramatically over the past decade, but has recently hit a bottleneck, Nayak said. Interconnects, the tiny copper wires that transport electricity and information around the chip and to other chips, have also shrunk. As interconnects get smaller, the copper's resistance increases and its ability to conduct electricity degrades. This means fewer electrons are able to pass through the copper successfully, and any lingering electrons are expressed as heat. This heat can have negative effects on both a computer chip's speed and performance.

Researchers in both industry and academia are looking for alternative materials to replace copper as interconnects. Carbon nanotube bundles are a popular possible successor to copper, Nayak said, because of the material's excellent conductivity and mechanical integrity. It is generally accepted that a quality replacement for copper must be discovered and perfected in the next five to 10 years in order to further perpetuate Moore's Law - an industry mantra that states the number of transistors on a computer chip, and thus the chip's speed, should double every 18-24 months.

Nayak said there are still many challenges to overcome before mass-produced carbon nanotube interconnects can be realized. There are still issues concerning the cost of efficiency of creating bulk carbon nanotubes, and growing nanotubes that are solely metallic rather than their current state being of partially metallic and partially semiconductor. More study will also be required, he said, to model and simulate the effects of imperfections in carbon nanotubes on the electrical resistance, contact resistance, capacitance, and other vital characteristics of a nanotube interconnect.

Rensselaer graduate student Yu Zhou and postdoctoral research assistant Subbalakshmi Sreekala are co-authors of the paper. Materials science and engineering professor Pulickel Ajayan, who is now at Rice University, is also a co-author.

Funding for this project was provided by the New York State Interconnect Focus Center.

####

About Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute, founded in 1824, is the nationís oldest technological university. The university offers bachelorís, masterís, and doctoral degrees in engineering, the sciences, information technology, architecture, management, and the humanities and social sciences. Institute programs serve undergraduates, graduate students, and working professionals around the world. Rensselaer faculty are known for pre-eminence in research conducted in a wide range of fields, with particular emphasis in biotechnology, nanotechnology, information technology, and the media arts and technology. The Institute is well known for its success in the transfer of technology from the laboratory to the marketplace so that new discoveries and inventions benefit human life, protect the environment, and strengthen economic development.

For more information, please click here

Contacts:
Michael Mullaney
(518) 276-6161

Copyright © Rensselaer Polytechnic Institute

If you have a comment, please Contact us.

Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.

Bookmark:
Delicious Digg Newsvine Google Yahoo Reddit Magnoliacom Furl Facebook

Related News Press

News and information

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Kalam: versatility personified August 1st, 2015

Chip Technology

This could replace your silicon computer chips: A new semiconductor material made from black phosphorus may be a candidate to replace silicon in future tech July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Meet the high-performance single-molecule diode: Major milestone in molecular electronics scored by Berkeley Lab and Columbia University team July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanotubes/Buckyballs/Fullerenes

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Controlling Dynamic Behavior of Carbon Nanosheets in Structures Made Possible July 30th, 2015

March 2016; 6th Int'l Conference on Nanostructures in Iran July 29th, 2015

Short wavelength plasmons observed in nanotubes: Berkeley Lab researchers create Ludinger liquid plasmons in metallic SWNTs July 28th, 2015

Nanoelectronics

Superfast fluorescence sets new speed record: Plasmonic device has speed and efficiency to serve optical computers July 27th, 2015

Spintronics: Molecules stabilizing magnetism: Organic molecules fixing the magnetic orientation of a cobalt surface/ building block for a compact and low-cost storage technology/ publication in Nature Materials July 25th, 2015

ORNL researchers make scalable arrays of 'building blocks' for ultrathin electronics July 22nd, 2015

An easy, scalable and direct method for synthesizing graphene in silicon microelectronics: Korean researchers grow 4-inch diameter, high-quality, multi-layer graphene on desired silicon substrates, an important step for harnessing graphene in commercial silicon microelectronics July 21st, 2015

Discoveries

Gold-diamond nanodevice for hyperlocalised cancer therapy: Gold nanorods can be used as remote controlled nanoheaters delivering the right amount of thermal treatment to cancer cells, thanks to diamond nanocrystals used as temperature sensors August 1st, 2015

Shaping the hilly landscapes of a semi-conductor nanoworld August 1st, 2015

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Announcements

Self-assembling, biomimetic membranes may aid water filtration August 1st, 2015

Transparent, electrically conductive network of encapsulated silver nanowires: A novel electrode for optoelectronics August 1st, 2015

Harris & Harris Group Portfolio Company, HZO, Announces Partnerships with Dell and Motorola August 1st, 2015

Advances and Applications in Biosensing, Sensor Power, and Sensor R&D to be Covered at Sensors Global Summit August 1st, 2015

Quantum nanoscience

Solid state physics: Quantum matter stuck in unrest August 1st, 2015

Theoretical Physicists at Freie Universitšt Berlin Develop New Insights into Interface between Classical and Quantum Worlds July 31st, 2015

Detecting small metallic contaminants in food via magnetization: A practical metallic-contaminant detecting system using three high-Tc RF superconducting quantum interference devices (SQUIDs) July 29th, 2015

Drawing a line between quantum and classical world: Bell's Inequality fails as a test of the boundary July 21st, 2015

NanoNews-Digest
The latest news from around the world, FREE



  Premium Products
NanoNews-Custom
Only the news you want to read!
 Learn More
NanoTech-Transfer
University Technology Transfer & Patents
 Learn More
NanoStrategies
Full-service, expert consulting
 Learn More











ASP
Nanotechnology Now Featured Books




NNN

The Hunger Project